These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 11072757)

  • 1. Local stability analysis of spatially homogeneous solutions of multi-patch systems.
    Jansen VA; Lloyd AL
    J Math Biol; 2000 Sep; 41(3):232-52. PubMed ID: 11072757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of spatial heterogeneity on a predator-prey system dynamics.
    Poggiale JC; Auger P
    C R Biol; 2004 Nov; 327(11):1058-63. PubMed ID: 15628227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Almost periodic solution of non-autonomous Lotka-Volterra predator-prey dispersal system with delays.
    Meng X; Chen L
    J Theor Biol; 2006 Dec; 243(4):562-74. PubMed ID: 16934297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of a pool of dispersers on host-parasitoid systems.
    Weisser WW; Jansen VA; Hassell MP
    J Theor Biol; 1997 Dec; 189(4):413-25. PubMed ID: 9446750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of predator density dependent dispersal of prey on stability of a predator-prey system.
    Mchich R; Auger P; Poggiale JC
    Math Biosci; 2007 Apr; 206(2):343-56. PubMed ID: 16455112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metapopulation model for a prey-predator system: Nonlinear migration due to the finite capacities of patches.
    Yokoi H; Tainaka KI; Sato K
    J Theor Biol; 2019 Sep; 477():24-35. PubMed ID: 31194986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global stability results for a generalized Lotka-Volterra system with distributed delays. Applications to predator-prey and to epidemic systems.
    Beretta E; Capasso V; Rinaldi F
    J Math Biol; 1988; 26(6):661-88. PubMed ID: 3230365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Population abundance in predator-prey systems with predator's dispersal between two patches.
    Huang R; Wang Y; Wu H
    Theor Popul Biol; 2020 Oct; 135():1-8. PubMed ID: 32659231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metapopulation models with anti-symmetric Lotka-Volterra systems.
    Anish AS; De Baets B; Rao S
    J Biol Dyn; 2024 Dec; 18(1):2397404. PubMed ID: 39238442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predator prey interactions with time delays.
    Cushing JM
    J Math Biol; 1976 Nov; 3(3-4):369-80. PubMed ID: 1035612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A two-patch prey-predator model with predator dispersal driven by the predation strength.
    Kang Y; Sasmal SK; Messan K
    Math Biosci Eng; 2017 Aug; 14(4):843-880. PubMed ID: 28608701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impacts of dispersal on the competition outcome of multi-patch competition models.
    Mai A; Sun GW; Wang L
    Math Biosci Eng; 2019 Mar; 16(4):2697-2716. PubMed ID: 31137233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal dynamics of epidemics: synchrony in metapopulation models.
    Lloyd AL; Jansen VA
    Math Biosci; 2004; 188():1-16. PubMed ID: 14766090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The dynamics of two diffusively coupled predator-prey populations.
    Jansen VA
    Theor Popul Biol; 2001 Mar; 59(2):119-31. PubMed ID: 11302757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffusion-mediated persistence in two-species competition Lotka-Volterra model.
    Takeuchi Y
    Math Biosci; 1989 Jul; 95(1):65-83. PubMed ID: 2520178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predator-prey dynamics in models of prey dispersal in two-patch environments.
    Kuang Y; Takeuchi Y
    Math Biosci; 1994 Mar; 120(1):77-98. PubMed ID: 8155909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Existence and global attractivity of positive periodic solutions of periodic n-species Lotka-Volterra competition systems with several deviating arguments.
    Fan M; Wang K; Jiang D
    Math Biosci; 1999 Aug; 160(1):47-61. PubMed ID: 10465931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of dispersal in two-patch prey-predator system with positive density dependence growth of preys.
    Sasmal SK; Ghosh D
    Biosystems; 2017 Jan; 151():8-20. PubMed ID: 27884620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Angular velocity variations and stability of spatially explicit prey-predator systems.
    Abta R; Shnerb NM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051914. PubMed ID: 17677105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilizing effects in spatial parasitoid-host and predator-prey models: a review.
    Briggs CJ; Hoopes MF
    Theor Popul Biol; 2004 May; 65(3):299-315. PubMed ID: 15139366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.