BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 11072845)

  • 1. Volumetric properties for the monosaccharide (D-xylose, D-arabinose, D-glucose, D-galactose)-NaCl-water systems at 298.15 K.
    Zhuo K; Wang J; Yue Y; Wang H
    Carbohydr Res; 2000 Sep; 328(3):383-91. PubMed ID: 11072845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activity coefficients for NaCl-monosaccharide (D-glucose, D-galactose, D-xylose, D-arabinose)-water systems at 298.15 K.
    Zhuo K; Wang J; Wang H
    Carbohydr Res; 2000 Mar; 325(1):46-55. PubMed ID: 10741826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mid-infrared spectroscopic analysis of saccharides in aqueous solutions with sodium chloride.
    Kanou M; Kameoka T; Suehara KI; Hashimoto A
    Biosci Biotechnol Biochem; 2017 Apr; 81(4):735-742. PubMed ID: 28300505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics of the interaction of RbCl with some monosaccharides (D-glucose, D-galactose, D-xylose, and D-arabinose) in aqueous solutions at 298.15K.
    Jiang Y; Hu M; Li S; Wang J; Zhuo K
    Carbohydr Res; 2006 Feb; 341(2):262-9. PubMed ID: 16330007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydration behaviour of some mono-, di-, and tri-saccharides in aqueous sodium gluconate solutions at (288.15, 298.15, 308.15 and 318.15)K: volumetric and rheological approach.
    Banipal PK; Singh V; Aggarwal N; Banipal TS
    Food Chem; 2015 Feb; 168():142-50. PubMed ID: 25172693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of magnesium chloride (2:1 electrolyte) on the aqueous solution behavior of some saccharides over the temperature range of 288.15-318.15 K: a volumetric approach.
    Banipal PK; Hundal AK; Banipal TS
    Carbohydr Res; 2010 Oct; 345(15):2262-71. PubMed ID: 20832058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of sodium halides with sugars in water: a study of viscosity and (1)H spin-lattice relaxation time.
    Zhuo K; Liu H; Tang J; Chen Y; Wang J
    J Phys Chem B; 2009 Oct; 113(41):13638-44. PubMed ID: 19769371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the triple solute/ion/water interactions on the saccharide hydration: A volumetric approach.
    Teychené J; Roux-De Balmann H; Galier S
    Carbohydr Res; 2017 Aug; 448():118-127. PubMed ID: 28662407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental and theoretical studies of sodium cation interactions with D-arabinose, xylose, glucose, and galactose.
    Heaton AL; Armentrout PB
    J Phys Chem A; 2008 Oct; 112(41):10156-67. PubMed ID: 18798601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aggregation behavior of a model ionic liquid surfactant in monosaccharide + water solutions.
    Chen Y; Zhao Y; Chen J; Zhuo K; Wang J
    J Colloid Interface Sci; 2011 Dec; 364(2):388-94. PubMed ID: 21925675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Volumetric and acoustic properties of D-mannitol in aqueous sodium or magnesium chloride solutions over temperature range of 293.15-313.15K.
    Warmińska D
    Carbohydr Res; 2012 Feb; 349():44-51. PubMed ID: 22221791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calorimetric and theoretical study of the interaction between some saccharides and sodium halide in water.
    Zhuo K; Fu Y; Bai G; Wang J; Yan H; Wang H
    J Phys Chem B; 2012 Aug; 116(33):10026-35. PubMed ID: 22779908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions in saccharide/cation/water systems: Insights from density functional theory.
    Teychené J; Roux-de Balmann H; Maron L; Galier S
    Food Chem; 2020 Oct; 327():127054. PubMed ID: 32460129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial neural network aided estimation of the electrochemical signals of monosaccharides on gold electrode.
    Gobal F; Dilmaghani AS
    Carbohydr Res; 2008 Jun; 343(8):1359-65. PubMed ID: 18436198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Volumetric and UV absorption studies on understanding the solvation behavior of polyhydroxy solutes in l-ascorbic acid(aq) solutions at T=(288.15 to 318.15)K.
    Banipal PK; Sharma M; Banipal TS
    Food Chem; 2016 Feb; 192():765-74. PubMed ID: 26304409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conversion of hemicellulose sugars catalyzed by formic acid: kinetics of the dehydration of D-xylose, L-arabinose, and D-glucose.
    Dussan K; Girisuta B; Lopes M; Leahy JJ; Hayes MH
    ChemSusChem; 2015 Apr; 8(8):1411-28. PubMed ID: 25821128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase transfer of monosaccharides through noncovalent interactions: selective extraction of glucose by a lipophilic cage receptor.
    Ryan TJ; Lecollinet G; Velasco T; Davis AP
    Proc Natl Acad Sci U S A; 2002 Apr; 99(8):4863-6. PubMed ID: 11929965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Densities and apparent molar volumes of atmospherically important electrolyte solutions. 1. The solutes H2SO4, HNO3, HCl, Na2SO4, NaNO3, NaCl, (NH4)2SO4, NH4NO3, and NH4Cl from 0 to 50 °C, including extrapolations to very low temperature and to the pure liquid state, and NaHSO4, NaOH, and NH3 at 25 °C.
    Clegg SL; Wexler AS
    J Phys Chem A; 2011 Apr; 115(15):3393-460. PubMed ID: 21438504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deactivation of chloroperoxidase by monosaccharides (D-glucose, D-galactose, and D-xylose).
    Jin R; Li C; Zhi L; Jiang Y; Hu M; Li S; Zhai Q
    Carbohydr Res; 2013 Apr; 370():72-5. PubMed ID: 23454136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The saccharide-hydrazide linkage: molecular and crystal structures of the semicarbazide derivatives of D-glucose, D-galactose, and D-xylose, including a 'forbidden' conformation of the galactose derivative.
    Ojala CR; Ostman JM; Ojala WH
    Carbohydr Res; 2002 Jan; 337(1):21-9. PubMed ID: 11755908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.