These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
339 related articles for article (PubMed ID: 11073458)
1. NMDA receptor-dependent synaptic reinforcement as a crucial process for memory consolidation. Shimizu E; Tang YP; Rampon C; Tsien JZ Science; 2000 Nov; 290(5494):1170-4. PubMed ID: 11073458 [TBL] [Abstract][Full Text] [Related]
2. Genetic enhancement of learning and memory in mice. Tang YP; Shimizu E; Dube GR; Rampon C; Kerchner GA; Zhuo M; Liu G; Tsien JZ Nature; 1999 Sep; 401(6748):63-9. PubMed ID: 10485705 [TBL] [Abstract][Full Text] [Related]
3. Requirement of NMDA receptor reactivation for consolidation and storage of nondeclarative taste memory revealed by inducible NR1 knockout. Cui Z; Lindl KA; Mei B; Zhang S; Tsien JZ Eur J Neurosci; 2005 Aug; 22(3):755-63. PubMed ID: 16101757 [TBL] [Abstract][Full Text] [Related]
4. Memory consolidation induces N-methyl-D-aspartic acid-receptor- and Ca2+/calmodulin-dependent protein kinase II-dependent modifications in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor properties. Bevilaqua LR; Medina JH; Izquierdo I; Cammarota M Neuroscience; 2005; 136(2):397-403. PubMed ID: 16182449 [TBL] [Abstract][Full Text] [Related]
5. Post-training N-methyl-D-aspartate receptor blockade offers protection from retrograde interference but does not affect consolidation of weak or strong memory traces in the water maze. Day M; Langston RF Neuroscience; 2006; 137(1):19-28. PubMed ID: 16289349 [TBL] [Abstract][Full Text] [Related]
6. Synaptic reentry reinforcement based network model for long-term memory consolidation. Wittenberg GM; Sullivan MR; Tsien JZ Hippocampus; 2002; 12(5):637-47. PubMed ID: 12440578 [TBL] [Abstract][Full Text] [Related]
7. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Tsien JZ; Huerta PT; Tonegawa S Cell; 1996 Dec; 87(7):1327-38. PubMed ID: 8980238 [TBL] [Abstract][Full Text] [Related]
8. Inducible and reversible NR1 knockout reveals crucial role of the NMDA receptor in preserving remote memories in the brain. Cui Z; Wang H; Tan Y; Zaia KA; Zhang S; Tsien JZ Neuron; 2004 Mar; 41(5):781-93. PubMed ID: 15003177 [TBL] [Abstract][Full Text] [Related]
9. Defective synaptic transmission and structure in the dentate gyrus and selective fear memory impairment in the Rsk2 mutant mouse model of Coffin-Lowry syndrome. Morice E; Farley S; Poirier R; Dallerac G; Chagneau C; Pannetier S; Hanauer A; Davis S; Vaillend C; Laroche S Neurobiol Dis; 2013 Oct; 58():156-68. PubMed ID: 23742761 [TBL] [Abstract][Full Text] [Related]
10. Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Nakazawa K; Quirk MC; Chitwood RA; Watanabe M; Yeckel MF; Sun LD; Kato A; Carr CA; Johnston D; Wilson MA; Tonegawa S Science; 2002 Jul; 297(5579):211-8. PubMed ID: 12040087 [TBL] [Abstract][Full Text] [Related]
11. An emerging molecular and cellular framework for memory processing by the hippocampus. Wittenberg GM; Tsien JZ Trends Neurosci; 2002 Oct; 25(10):501-5. PubMed ID: 12220877 [TBL] [Abstract][Full Text] [Related]
12. Molecular and systems mechanisms of memory consolidation and storage. Wang H; Hu Y; Tsien JZ Prog Neurobiol; 2006 Jun; 79(3):123-35. PubMed ID: 16891050 [TBL] [Abstract][Full Text] [Related]
13. Deletion of CPEB3 enhances hippocampus-dependent memory via increasing expressions of PSD95 and NMDA receptors. Chao HW; Tsai LY; Lu YL; Lin PY; Huang WH; Chou HJ; Lu WH; Lin HC; Lee PT; Huang YS J Neurosci; 2013 Oct; 33(43):17008-22. PubMed ID: 24155305 [TBL] [Abstract][Full Text] [Related]
14. Xenon attenuates hippocampal long-term potentiation by diminishing synaptic and extrasynaptic N-methyl-D-aspartate receptor currents. Kratzer S; Mattusch C; Kochs E; Eder M; Haseneder R; Rammes G Anesthesiology; 2012 Mar; 116(3):673-82. PubMed ID: 22293720 [TBL] [Abstract][Full Text] [Related]
15. Memory formation: the sequence of biochemical events in the hippocampus and its connection to activity in other brain structures. Izquierdo I; Medina JH Neurobiol Learn Mem; 1997 Nov; 68(3):285-316. PubMed ID: 9398590 [TBL] [Abstract][Full Text] [Related]
16. Spatial learning and synaptic hippocampal plasticity in type 2 somatostatin receptor knock-out mice. Dutar P; Vaillend C; Viollet C; Billard JM; Potier B; Carlo AS; Ungerer A; Epelbaum J Neuroscience; 2002; 112(2):455-66. PubMed ID: 12044463 [TBL] [Abstract][Full Text] [Related]
17. Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice. Rampon C; Tang YP; Goodhouse J; Shimizu E; Kyin M; Tsien JZ Nat Neurosci; 2000 Mar; 3(3):238-44. PubMed ID: 10700255 [TBL] [Abstract][Full Text] [Related]
18. N-methyl-D-aspartate receptor-dependent long-term potentiation in CA1 region affects synaptic expression of glutamate receptor subunits and associated proteins in the whole hippocampus. Zhong WX; Dong ZF; Tian M; Cao J; Xu L; Luo JH Neuroscience; 2006 Sep; 141(3):1399-413. PubMed ID: 16766131 [TBL] [Abstract][Full Text] [Related]
20. A Place at the Table: LTD as a Mediator of Memory Genesis. Connor SA; Wang YT Neuroscientist; 2016 Aug; 22(4):359-71. PubMed ID: 25993993 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]