BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 11073866)

  • 21. Ethanol inhibits persistent activity in prefrontal cortical neurons.
    Tu Y; Kroener S; Abernathy K; Lapish C; Seamans J; Chandler LJ; Woodward JJ
    J Neurosci; 2007 Apr; 27(17):4765-75. PubMed ID: 17460089
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential effects of ascending neurons containing dopamine and noradrenaline in the control of spontaneous activity and of evoked responses in the rat prefrontal cortex.
    Mantz J; Milla C; Glowinski J; Thierry AM
    Neuroscience; 1988 Nov; 27(2):517-26. PubMed ID: 3146033
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Social isolation rearing affects prefrontal cortical response to ventral tegmental area stimulation.
    Peters YM; O'Donnell P
    Biol Psychiatry; 2005 May; 57(10):1205-8. PubMed ID: 15866562
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prefrontal cortex gates acute morphine action on dopamine neurons in the ventral tegmental area.
    Liu C; Fang X; Wu Q; Jin G; Zhen X
    Neuropharmacology; 2015 Aug; 95():299-308. PubMed ID: 25882828
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Excitatory response of prefrontal cortical fast-spiking interneurons to ventral tegmental area stimulation in vivo.
    Tseng KY; Mallet N; Toreson KL; Le Moine C; Gonon F; O'Donnell P
    Synapse; 2006 Jun; 59(7):412-7. PubMed ID: 16485264
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Integrity of the mesocortical dopaminergic system is necessary for complete expression of in vivo hippocampal-prefrontal cortex long-term potentiation.
    Gurden H; Tassin JP; Jay TM
    Neuroscience; 1999; 94(4):1019-27. PubMed ID: 10625044
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrical stimulation of the ventral tegmental area evokes sleep-like state transitions under urethane anaesthesia in the rat medial prefrontal cortex via dopamine D
    Gretenkord S; Olthof BMJ; Stylianou M; Rees A; Gartside SE; LeBeau FEN
    Eur J Neurosci; 2020 Jul; 52(2):2915-2930. PubMed ID: 31891427
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition of hippocampoprefrontal cortex excitatory responses by the mesocortical DA system.
    Jay TM; Glowinski J; Thierry AM
    Neuroreport; 1995 Oct; 6(14):1845-8. PubMed ID: 8547581
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Post-pubertal emergence of prefrontal cortical up states induced by D1-NMDA co-activation.
    Tseng KY; O'Donnell P
    Cereb Cortex; 2005 Jan; 15(1):49-57. PubMed ID: 15217899
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of corticosterone on excitatory amino acid responses in dopamine-sensitive neurons in the ventral tegmental area.
    Cho K; Little HJ
    Neuroscience; 1999; 88(3):837-45. PubMed ID: 10363821
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chronic nicotine and smoke treatment modulate dopaminergic activities in ventral tegmental area and nucleus accumbens and the gamma-aminobutyric acid type B receptor expression of the rat prefrontal cortex.
    Li SP; Park MS; Kim JH; Kim MO
    J Neurosci Res; 2004 Dec; 78(6):868-79. PubMed ID: 15521060
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dopamine-glutamate interactions in the control of cell excitability in medial prefrontal cortical pyramidal neurons from adult rats.
    Tseng KY; O'Donnell P
    Ann N Y Acad Sci; 2003 Nov; 1003():476-8. PubMed ID: 14684493
    [No Abstract]   [Full Text] [Related]  

  • 33. Nicotine-induced Fos expression in the nucleus accumbens and the medial prefrontal cortex of the rat: role of nicotinic and NMDA receptors in the ventral tegmental area.
    Schilström B; De Villiers S; Malmerfelt A; Svensson TH; Nomikos GG
    Synapse; 2000 Jun; 36(4):314-21. PubMed ID: 10819909
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Putative role of presynaptic alpha7* nicotinic receptors in nicotine stimulated increases of extracellular levels of glutamate and aspartate in the ventral tegmental area.
    Schilström B; Fagerquist MV; Zhang X; Hertel P; Panagis G; Nomikos GG; Svensson TH
    Synapse; 2000 Dec; 38(4):375-83. PubMed ID: 11044884
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microiontophoretic studies of the dopaminergic inhibition from the ventral tegmental area to the nucleus accumbens neurons.
    Akaike A; Sasa M; Takaori S
    J Pharmacol Exp Ther; 1984 Jun; 229(3):859-64. PubMed ID: 6726660
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area.
    Sesack SR; Pickel VM
    J Comp Neurol; 1992 Jun; 320(2):145-60. PubMed ID: 1377716
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alpha1-adrenergic, D1, and D2 receptors interactions in the prefrontal cortex: implications for the modality of action of different types of neuroleptics.
    Gioanni Y; Thierry AM; Glowinski J; Tassin JP
    Synapse; 1998 Dec; 30(4):362-70. PubMed ID: 9826228
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Developing a neuronal model for the pathophysiology of schizophrenia based on the nature of electrophysiological actions of dopamine in the prefrontal cortex.
    Yang CR; Seamans JK; Gorelova N
    Neuropsychopharmacology; 1999 Aug; 21(2):161-94. PubMed ID: 10432466
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neonatal hippocampal damage alters electrophysiological properties of prefrontal cortical neurons in adult rats.
    O'Donnell P; Lewis BL; Weinberger DR; Lipska BK
    Cereb Cortex; 2002 Sep; 12(9):975-82. PubMed ID: 12183396
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cocaine enhances medial prefrontal cortex neuron response to ventral tegmental area activation.
    Peterson SL; Olsta SA; Matthews RT
    Brain Res Bull; 1990 Feb; 24(2):267-73. PubMed ID: 2322861
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.