BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 11073896)

  • 1. Conversion of 4-hydroxyacetophenone into 4-phenyl acetate by a flavin adenine dinucleotide-containing Baeyer-Villiger-type monooxygenase.
    Tanner A; Hopper DJ
    J Bacteriol; 2000 Dec; 182(23):6565-9. PubMed ID: 11073896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 4-Hydroxyacetophenone monooxygenase from Pseudomonas fluorescens ACB. A novel flavoprotein catalyzing Baeyer-Villiger oxidation of aromatic compounds.
    Kamerbeek NM; Moonen MJ; Van Der Ven JG; Van Berkel WJ; Fraaije MW; Janssen DB
    Eur J Biochem; 2001 May; 268(9):2547-57. PubMed ID: 11322873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning, Baeyer-Villiger biooxidations, and structures of the camphor pathway 2-oxo-Δ(3)-4,5,5-trimethylcyclopentenylacetyl-coenzyme A monooxygenase of Pseudomonas putida ATCC 17453.
    Leisch H; Shi R; Grosse S; Morley K; Bergeron H; Cygler M; Iwaki H; Hasegawa Y; Lau PC
    Appl Environ Microbiol; 2012 Apr; 78(7):2200-12. PubMed ID: 22267661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and characterization of cyclohexanone 1,2-monooxygenase from Exophiala jeanselmei strain KUFI-6N.
    Hasegawa Y; Nakai Y; Tokuyama T; Iwaki H
    Biosci Biotechnol Biochem; 2000 Dec; 64(12):2696-8. PubMed ID: 11210139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Camphor pathway redux: functional recombinant expression of 2,5- and 3,6-diketocamphane monooxygenases of Pseudomonas putida ATCC 17453 with their cognate flavin reductase catalyzing Baeyer-Villiger reactions.
    Iwaki H; Grosse S; Bergeron H; Leisch H; Morley K; Hasegawa Y; Lau PC
    Appl Environ Microbiol; 2013 May; 79(10):3282-93. PubMed ID: 23524667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate specificity and enantioselectivity of 4-hydroxyacetophenone monooxygenase.
    Kamerbeek NM; Olsthoorn AJ; Fraaije MW; Janssen DB
    Appl Environ Microbiol; 2003 Jan; 69(1):419-26. PubMed ID: 12514023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification and characterisation of the NADH:acceptor reductase component of xylene monooxygenase encoded by the TOL plasmid pWW0 of Pseudomonas putida mt-2.
    Shaw JP; Harayama S
    Eur J Biochem; 1992 Oct; 209(1):51-61. PubMed ID: 1327782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scale-up of Baeyer-Villiger monooxygenase-catalyzed synthesis of enantiopure compounds.
    Geitner K; Rehdorf J; Snajdrova R; Bornscheuer UT
    Appl Microbiol Biotechnol; 2010 Nov; 88(5):1087-93. PubMed ID: 20689951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structures of cyclohexanone monooxygenase reveal complex domain movements and a sliding cofactor.
    Mirza IA; Yachnin BJ; Wang S; Grosse S; Bergeron H; Imura A; Iwaki H; Hasegawa Y; Lau PC; Berghuis AM
    J Am Chem Soc; 2009 Jul; 131(25):8848-54. PubMed ID: 19385644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 19F NMR study on the biological Baeyer-Villiger oxidation of acetophenones.
    Moonen MJ; Rietjens IM; van Berkel WJ
    J Ind Microbiol Biotechnol; 2001; 26(1-2):35-42. PubMed ID: 11548747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lysine 219 participates in NADPH specificity in a flavin-containing monooxygenase from Saccharomyces cerevisiae.
    Suh JK; Poulsen LL; Ziegler DM; Robertus JD
    Arch Biochem Biophys; 1999 Dec; 372(2):360-6. PubMed ID: 10600176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A flavoprotein monooxygenase that catalyses a Baeyer-Villiger reaction and thioether oxidation using NADH as the nicotinamide cofactor.
    Jensen CN; Cartwright J; Ward J; Hart S; Turkenburg JP; Ali ST; Allen MJ; Grogan G
    Chembiochem; 2012 Apr; 13(6):872-8. PubMed ID: 22416037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying determinants of NADPH specificity in Baeyer-Villiger monooxygenases.
    Kamerbeek NM; Fraaije MW; Janssen DB
    Eur J Biochem; 2004 Jun; 271(11):2107-16. PubMed ID: 15153101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and characterization of a Baeyer-Villiger mono-oxygenase from Rhodococcus erythropolis DCL14 involved in three different monocyclic monoterpene degradation pathways.
    Van Der Werf MJ
    Biochem J; 2000 May; 347 Pt 3(Pt 3):693-701. PubMed ID: 10769172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical and physical characterization of the active FAD-containing form of nitroalkane oxidase from Fusarium oxysporum.
    Gadda G; Fitzpatrick PF
    Biochemistry; 1998 Apr; 37(17):6154-64. PubMed ID: 9558355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fungal BVMOs as alternatives to cyclohexanone monooxygenase.
    Mthethwa KS; Kassier K; Engel J; Kara S; Smit MS; Opperman DJ
    Enzyme Microb Technol; 2017 Nov; 106():11-17. PubMed ID: 28859804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning, expression, characterization, and biocatalytic investigation of the 4-hydroxyacetophenone monooxygenase from Pseudomonas putida JD1.
    Rehdorf J; Zimmer CL; Bornscheuer UT
    Appl Environ Microbiol; 2009 May; 75(10):3106-14. PubMed ID: 19251889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploiting Cofactor Versatility to Convert a FAD-Dependent Baeyer-Villiger Monooxygenase into a Ketoreductase.
    Xu J; Peng Y; Wang Z; Hu Y; Fan J; Zheng H; Lin X; Wu Q
    Angew Chem Int Ed Engl; 2019 Oct; 58(41):14499-14503. PubMed ID: 31423719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of a Baeyer-Villiger monooxygenase.
    Malito E; Alfieri A; Fraaije MW; Mattevi A
    Proc Natl Acad Sci U S A; 2004 Sep; 101(36):13157-62. PubMed ID: 15328411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic studies on cyclohexanone oxygenase.
    Ryerson CC; Ballou DP; Walsh C
    Biochemistry; 1982 May; 21(11):2644-55. PubMed ID: 7093214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.