These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
300 related articles for article (PubMed ID: 11074434)
1. Interfacial strength of compression-molded specimens between PMMA powder and PMMA/MMA monomer solution-treated ultra-high molecular weight polyethylene (UHMWPE) powder. Park KD; Park JB J Biomed Mater Res; 2000; 53(6):737-47. PubMed ID: 11074434 [TBL] [Abstract][Full Text] [Related]
2. Interfacial strength between molded UHMWPE and PMMA-MMA monomer treated UHMWPE. Park KD; Kang YH; Park JB J Long Term Eff Med Implants; 1999; 9(4):303-18. PubMed ID: 10847970 [TBL] [Abstract][Full Text] [Related]
3. Characterization of compression-molded UHMWPE, PMMA and PMMA/MMA treated UHMWPE: density measurement, FTIR-ATR, and DSC. Park KD; Khang GS; Lee HB; Park JB Biomed Mater Eng; 2001; 11(4):311-23. PubMed ID: 11790863 [TBL] [Abstract][Full Text] [Related]
4. Surface and chemical properties of surface-modified UHMWPE powder and mechanical and thermal properties of it impregnated PMMA bone cement, III: effect of various ratios of initiator/inhibitor on the surface modification of UHMWPE powder. Yang DH; Yoon GH; Kim SH; Rhee JM; Kim YS; Khang G J Biomater Sci Polym Ed; 2005; 16(9):1121-38. PubMed ID: 16231603 [TBL] [Abstract][Full Text] [Related]
5. Preliminary study of interfacial shear strength between PMMA precoated UHMWPE acetabular cup and PMMA bone cement. Park KD; Kim J; Yang SJ; Yao A; Park JB J Biomed Mater Res B Appl Biomater; 2003 May; 65(2):272-9. PubMed ID: 12687720 [TBL] [Abstract][Full Text] [Related]
6. Investigation of interfacial strength and its structure on the development of a new design of UHMWPE acetabular component. Park K; Park J J Biomed Mater Res; 2002; 63(3):363-72. PubMed ID: 12115770 [TBL] [Abstract][Full Text] [Related]
7. Surface and chemical properties of surface-modified UHMWPE powder and mechanical and thermal properties of its impregnated PMMA bone cement, IV: effect of MMA/accelerator on the surface modification of UHMWPE powder. Yang DH; Ko JT; Kim YS; Kim MS; Shin HS; Rhee JM; Khang G; Lee HB J Biomater Sci Polym Ed; 2006; 17(7):807-20. PubMed ID: 16909947 [TBL] [Abstract][Full Text] [Related]
8. Precoating of ultrahigh molecular weight polyethylene with polymethylmethacrylate: interfacial strength. Kang YH; Park JB J Biomed Mater Res; 1998; 43(3):261-9. PubMed ID: 9730063 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of bioactive PMMA bone cement via modification with methacryloxypropyltri-methoxysilane and calcium acetate. Mori A; Ohtsuki C; Miyazaki T; Sugino A; Tanihara M; Kuramoto K; Osaka A J Mater Sci Mater Med; 2005 Aug; 16(8):713-8. PubMed ID: 15965740 [TBL] [Abstract][Full Text] [Related]
10. Bone bonding ability and handling properties of a titania-polymethylmethacrylate (PMMA) composite bioactive bone cement modified with a unique PMMA powder. Fukuda C; Goto K; Imamura M; Neo M; Nakamura T Acta Biomater; 2011 Oct; 7(10):3595-600. PubMed ID: 21704200 [TBL] [Abstract][Full Text] [Related]
11. Effect of MMA-g-UHMWPE grafted fiber on mechanical properties of acrylic bone cement. Yang JM; Huang PY; Yang MC; Lo SK J Biomed Mater Res; 1997; 38(4):361-9. PubMed ID: 9421758 [TBL] [Abstract][Full Text] [Related]
12. Effect of interface conditions between ultrahigh molecular weight polyethylene and polymethyl methacrylate bone cement on the mechanical behaviour of total shoulder arthroplasty. Oosterom R; van Ostayen RA; Antonelli V; Bersee HE Proc Inst Mech Eng H; 2005 Nov; 219(6):425-35. PubMed ID: 16312102 [TBL] [Abstract][Full Text] [Related]
13. Interfacial tensile strength between polymethylmethacrylate-based bioactive bone cements and bone. Kamimura M; Tamura J; Shinzato S; Kawanabe K; Neo M; Kokubo T; Nakamura T J Biomed Mater Res; 2002 Sep; 61(4):564-71. PubMed ID: 12115446 [TBL] [Abstract][Full Text] [Related]
14. Biological and mechanical properties of PMMA-based bioactive bone cements. Mousa WF; Kobayashi M; Shinzato S; Kamimura M; Neo M; Yoshihara S; Nakamura T Biomaterials; 2000 Nov; 21(21):2137-46. PubMed ID: 10985486 [TBL] [Abstract][Full Text] [Related]
15. Modification of polymethylmethacrylate bone cement with halloysite clay nanotubes. Hamdy TM BMC Oral Health; 2024 Aug; 24(1):893. PubMed ID: 39098928 [TBL] [Abstract][Full Text] [Related]
16. NMP-modified PMMA bone cement with adapted mechanical and hardening properties for the use in cancellous bone augmentation. Boger A; Wheeler K; Montali A; Gruskin E J Biomed Mater Res B Appl Biomater; 2009 Aug; 90(2):760-6. PubMed ID: 19280644 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of Different Experience Levels of Orthopaedic Residents Effect on Polymethylmethacrylate (PMMA) Bone Cement Mechanical Properties. Struemph JM; Chong AC; Wooley PH Iowa Orthop J; 2015; 35():193-8. PubMed ID: 26361465 [TBL] [Abstract][Full Text] [Related]
19. Influence of the modification of P/L ratio on a new formulation of acrylic bone cement. Pascual B; Gurruchaga M; Ginebra MP; Gil FJ; Planell JA; Goñi I Biomaterials; 1999 Mar; 20(5):465-74. PubMed ID: 10204989 [TBL] [Abstract][Full Text] [Related]
20. Bioactive polymethyl methacrylate-based bone cement: comparison of glass beads, apatite- and wollastonite-containing glass-ceramic, and hydroxyapatite fillers on mechanical and biological properties. Shinzato S; Kobayashi M; Mousa WF; Kamimura M; Neo M; Kitamura Y; Kokubo T; Nakamura T J Biomed Mater Res; 2000 Aug; 51(2):258-72. PubMed ID: 10825226 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]