These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

46 related articles for article (PubMed ID: 11075467)

  • 1. [Structural and functional organization of the immature motor center].
    Kuznetsov SV
    Zh Evol Biokhim Fiziol; 2000; 36(4):367-76. PubMed ID: 11075467
    [No Abstract]   [Full Text] [Related]  

  • 2. [The ontogenetic aspects of the activities of the spinal pacemakers of rhythmic motor excitation].
    Bursian AV; Kuznetsov SV
    Zh Evol Biokhim Fiziol; 1992; 28(1):112-9. PubMed ID: 1523892
    [No Abstract]   [Full Text] [Related]  

  • 3. [Effect of hindbrain structures on autogenous periodic motor activity in the rat pup].
    Elshina MA; Bursian AV
    Zh Evol Biokhim Fiziol; 1985; 21(4):384-9. PubMed ID: 4050213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Stages in the development of interrelations between autogenic and reflex motor mechanisms in the ontogeny of homeotherms].
    Bursian AV
    Usp Fiziol Nauk; 1982; 13(1):109-27. PubMed ID: 7039166
    [No Abstract]   [Full Text] [Related]  

  • 5. Rhythmic motor activity in thin transverse slice preparations of the fetal rat spinal cord.
    Nakayama K; Nishimaru H; Kudo N
    J Neurophysiol; 2004 Jul; 92(1):648-52. PubMed ID: 15028747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Genesis and adaptation of rhythmic movements].
    Rossignol S; Lund JP; Drew T; Dubuc R
    Union Med Can; 1985 Dec; 114(12):988-94. PubMed ID: 3913087
    [No Abstract]   [Full Text] [Related]  

  • 7. Disruption of left-right reciprocal coupling in the spinal cord of larval lamprey abolishes brain-initiated locomotor activity.
    Jackson AW; Horinek DF; Boyd MR; McClellan AD
    J Neurophysiol; 2005 Sep; 94(3):2031-44. PubMed ID: 16000521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alpha-1 adrenoceptor agonists generate a "fast" NMDA receptor-independent motor rhythm in the neonatal rat spinal cord.
    Gabbay H; Lev-Tov A
    J Neurophysiol; 2004 Aug; 92(2):997-1010. PubMed ID: 15084642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rostrocaudal distribution of spinal respiratory motor activity in an in vitro neonatal rat preparation.
    Iizuka M
    Neurosci Res; 2004 Nov; 50(3):263-9. PubMed ID: 15488289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct roles of glycinergic and GABAergic inhibition in coordinating locomotor-like rhythms in the neonatal mouse spinal cord.
    Hinckley C; Seebach B; Ziskind-Conhaim L
    Neuroscience; 2005; 131(3):745-58. PubMed ID: 15730878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The rat lumbosacral spinal cord adapts to robotic loading applied during stance.
    Timoszyk WK; De Leon RD; London N; Roy RR; Edgerton VR; Reinkensmeyer DJ
    J Neurophysiol; 2002 Dec; 88(6):3108-17. PubMed ID: 12466434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous crossed phrenic activity in the neonatal respiratory network.
    Zimmer MB; Goshgarian HG
    Exp Neurol; 2005 Aug; 194(2):530-40. PubMed ID: 16022876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The neural control of cyclic motor activity in the fetal rat (Rattus norvegicus).
    Robertson SS; Smotherman WP
    Physiol Behav; 1990 Jan; 47(1):121-6. PubMed ID: 2326326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Descending respiratory polysynaptic inputs to cervical and thoracic motoneurons diminish during early postnatal maturation in rat spinal cord.
    Juvin L; Morin D
    Eur J Neurosci; 2005 Feb; 21(3):808-13. PubMed ID: 15733100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptic specificity: development of locomotor rhythmicity.
    Sillar KT
    Curr Opin Neurobiol; 1994 Feb; 4(1):101-7. PubMed ID: 8173315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Respiration-related rhythmic activity in the rostral medulla of newborn rats.
    Onimaru H; Kumagawa Y; Homma I
    J Neurophysiol; 2006 Jul; 96(1):55-61. PubMed ID: 16495360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Serotonin refines the locomotor-related alternations in the in vitro neonatal rat spinal cord.
    Pearlstein E; Ben Mabrouk F; Pflieger JF; Vinay L
    Eur J Neurosci; 2005 Mar; 21(5):1338-46. PubMed ID: 15813943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A reliable technique for the induction of locomotor-like activity in the in vitro neonatal rat spinal cord using brainstem electrical stimulation.
    Zaporozhets E; Cowley KC; Schmidt BJ
    J Neurosci Methods; 2004 Oct; 139(1):33-41. PubMed ID: 15351519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spinal cord plasticity in response to unilateral inhibition of the rat motor cortex during development: changes to gene expression, muscle afferents and the ipsilateral corticospinal projection.
    Clowry GJ; Davies BM; Upile NS; Gibson CL; Bradley PM
    Eur J Neurosci; 2004 Nov; 20(10):2555-66. PubMed ID: 15548199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of sympathetic, respiratory and somatomotor outflow by an intraspinal pattern generator.
    Goodchild AK; van Deurzen BT; Hildreth CM; Pilowsky PM
    Clin Exp Pharmacol Physiol; 2008 Apr; 35(4):447-53. PubMed ID: 18307739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.