These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
308 related articles for article (PubMed ID: 11075811)
1. Regulation of ligand-induced heterodimerization and coactivator interaction by the activation function-2 domain of the vitamin D receptor. Liu YY; Nguyen C; Peleg S Mol Endocrinol; 2000 Nov; 14(11):1776-87. PubMed ID: 11075811 [TBL] [Abstract][Full Text] [Related]
2. Differential regulation of heterodimerization by 1alpha,25-dihydroxyvitamin D(3) and its 20-epi analog. Liu YY; Nguyen C; Ali Gardezi SA; Schnirer I; Peleg S Steroids; 2001; 66(3-5):203-12. PubMed ID: 11179727 [TBL] [Abstract][Full Text] [Related]
3. Mapping the domains of the interaction of the vitamin D receptor and steroid receptor coactivator-1. Gill RK; Atkins LM; Hollis BW; Bell NH Mol Endocrinol; 1998 Jan; 12(1):57-65. PubMed ID: 9440810 [TBL] [Abstract][Full Text] [Related]
4. Retinoid X receptor is a nonsilent major contributor to vitamin D receptor-mediated transcriptional activation. Bettoun DJ; Burris TP; Houck KA; Buck DW; Stayrook KR; Khalifa B; Lu J; Chin WW; Nagpal S Mol Endocrinol; 2003 Nov; 17(11):2320-8. PubMed ID: 12893883 [TBL] [Abstract][Full Text] [Related]
5. Vitamin D analogue-specific recruitment of vitamin D receptor coactivators. Issa LL; Leong GM; Sutherland RL; Eisman JA J Bone Miner Res; 2002 May; 17(5):879-90. PubMed ID: 12009019 [TBL] [Abstract][Full Text] [Related]
6. The autonomous transactivation domain in helix H3 of the vitamin D receptor is required for transactivation and coactivator interaction. Kraichely DM; Collins JJ; DeLisle RK; MacDonald PN J Biol Chem; 1999 May; 274(20):14352-8. PubMed ID: 10318858 [TBL] [Abstract][Full Text] [Related]
7. Evidence for ligand-dependent intramolecular folding of the AF-2 domain in vitamin D receptor-activated transcription and coactivator interaction. Masuyama H; Brownfield CM; St-Arnaud R; MacDonald PN Mol Endocrinol; 1997 Sep; 11(10):1507-17. PubMed ID: 9280066 [TBL] [Abstract][Full Text] [Related]
8. Synergistic activation of the prolactin promoter by vitamin D receptor and GHF-1: role of the coactivators, CREB-binding protein and steroid hormone receptor coactivator-1 (SRC-1). Castillo AI; Jimenez-Lara AM; Tolon RM; Aranda A Mol Endocrinol; 1999 Jul; 13(7):1141-54. PubMed ID: 10406465 [TBL] [Abstract][Full Text] [Related]
9. Analysis of the functional role of steroid receptor coactivator-1 in ligand-induced transactivation by thyroid hormone receptor. Jeyakumar M; Tanen MR; Bagchi MK Mol Endocrinol; 1997 Jun; 11(6):755-67. PubMed ID: 9171239 [TBL] [Abstract][Full Text] [Related]
10. Agonist-triggered modulation of the activated and silent state of the vitamin D(3) receptor by interaction with co-repressors and co-activators. Herdick M; Carlberg C J Mol Biol; 2000 Dec; 304(5):793-801. PubMed ID: 11124027 [TBL] [Abstract][Full Text] [Related]
11. Critical role of helix 12 of the vitamin D(3) receptor for the partial agonism of carboxylic ester antagonists. Väisänen S; Peräkylä M; Kärkkäinen JI; Steinmeyer A; Carlberg C J Mol Biol; 2002 Jan; 315(2):229-38. PubMed ID: 11779241 [TBL] [Abstract][Full Text] [Related]
12. Analysis of vitamin D analog-induced heterodimerization of vitamin D receptor with retinoid X receptor using the yeast two-hybrid system. Zhao XY; Eccleshall TR; Krishnan AV; Gross C; Feldman D Mol Endocrinol; 1997 Mar; 11(3):366-78. PubMed ID: 9058382 [TBL] [Abstract][Full Text] [Related]
13. Carboxylic ester antagonists of 1alpha,25-dihydroxyvitamin D(3) show cell-specific actions. Herdick M; Steinmeyer A; Carlberg C Chem Biol; 2000 Nov; 7(11):885-94. PubMed ID: 11094341 [TBL] [Abstract][Full Text] [Related]
14. The interaction of the vitamin D receptor with nuclear receptor corepressors and coactivators. Tagami T; Lutz WH; Kumar R; Jameson JL Biochem Biophys Res Commun; 1998 Dec; 253(2):358-63. PubMed ID: 9878542 [TBL] [Abstract][Full Text] [Related]
15. Differential use of transcription activation function 2 domain of the vitamin D receptor by 1,25-dihydroxyvitamin D3 and its A ring-modified analogs. Peleg S; Nguyen C; Woodard BT; Lee JK; Posner GH Mol Endocrinol; 1998 Apr; 12(4):525-35. PubMed ID: 9544988 [TBL] [Abstract][Full Text] [Related]
16. The vitamin D hormone and its nuclear receptor: molecular actions and disease states. Haussler MR; Haussler CA; Jurutka PW; Thompson PD; Hsieh JC; Remus LS; Selznick SH; Whitfield GK J Endocrinol; 1997 Sep; 154 Suppl():S57-73. PubMed ID: 9379138 [TBL] [Abstract][Full Text] [Related]
17. The unique tryptophan residue of the vitamin D receptor is critical for ligand binding and transcriptional activation. Solomon C; Macoritto M; Gao XL; White JH; Kremer R J Bone Miner Res; 2001 Jan; 16(1):39-45. PubMed ID: 11149488 [TBL] [Abstract][Full Text] [Related]
18. Vitamin D receptors from patients with resistance to 1,25-dihydroxyvitamin D3: point mutations confer reduced transactivation in response to ligand and impaired interaction with the retinoid X receptor heterodimeric partner. Whitfield GK; Selznick SH; Haussler CA; Hsieh JC; Galligan MA; Jurutka PW; Thompson PD; Lee SM; Zerwekh JE; Haussler MR Mol Endocrinol; 1996 Dec; 10(12):1617-31. PubMed ID: 8961271 [TBL] [Abstract][Full Text] [Related]
19. 25-Dehydro-1alpha-hydroxyvitamin D3-26,23S-lactone antagonizes the nuclear vitamin D receptor by mediating a unique noncovalent conformational change. Bula CM; Bishop JE; Ishizuka S; Norman AW Mol Endocrinol; 2000 Nov; 14(11):1788-96. PubMed ID: 11075812 [TBL] [Abstract][Full Text] [Related]
20. Hereditary 1,25-dihydroxyvitamin D resistant rickets due to a mutation causing multiple defects in vitamin D receptor function. Malloy PJ; Xu R; Peng L; Peleg S; Al-Ashwal A; Feldman D Endocrinology; 2004 Nov; 145(11):5106-14. PubMed ID: 15308610 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]