BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 11076403)

  • 1. Molecular alterations in hepatocyte transport mechanisms in acquired cholestatic liver disorders.
    Lee J; Boyer JL
    Semin Liver Dis; 2000; 20(3):373-84. PubMed ID: 11076403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bile salt transporters: molecular characterization, function, and regulation.
    Trauner M; Boyer JL
    Physiol Rev; 2003 Apr; 83(2):633-71. PubMed ID: 12663868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defective canalicular transport and toxicity of dietary ursodeoxycholic acid in the abcb11-/- mouse: transport and gene expression studies.
    Wang R; Liu L; Sheps JA; Forrest D; Hofmann AF; Hagey LR; Ling V
    Am J Physiol Gastrointest Liver Physiol; 2013 Aug; 305(4):G286-94. PubMed ID: 23764895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [New molecular aspects of cholestatic liver diseases].
    Trauner M; Fickert P; Stauber RE
    Z Gastroenterol; 1999 Jul; 37(7):639-47. PubMed ID: 10458013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cholestasis: the ABCs of cellular mechanisms for impaired bile secretion--transporters and genes.
    Shaffer EA
    Can J Gastroenterol; 2002 Jun; 16(6):380-9. PubMed ID: 12096302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From blood to bile: recent advances in hepatobiliary transport.
    Arrese M; Accatino L
    Ann Hepatol; 2002; 1(2):64-71. PubMed ID: 15115970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hepatobiliary transport of bile acids and organic anions.
    Takikawa H
    J Hepatobiliary Pancreat Surg; 2002; 9(4):443-7. PubMed ID: 12483266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Bile acids in the process of canalicular bile formation].
    Sinel'nik TB; Sinel'nik OD; Ribal'chenko VK
    Fiziol Zh (1994); 2003; 49(6):80-93. PubMed ID: 14965044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New molecular insights into the mechanisms of cholestasis.
    Wagner M; Zollner G; Trauner M
    J Hepatol; 2009 Sep; 51(3):565-80. PubMed ID: 19595470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in the exploration of the bile salt export pump (BSEP/ABCB11) function.
    Telbisz Á; Homolya L
    Expert Opin Ther Targets; 2016; 20(4):501-14. PubMed ID: 26573700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of synthesis and trafficking of canalicular transporters and its alteration in acquired hepatocellular cholestasis. Experimental therapeutic strategies for its prevention.
    Crocenzi FA; Mottino AD; Roma MG
    Curr Med Chem; 2004 Feb; 11(4):501-24. PubMed ID: 14965230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the bile salt export pump, BSEP, in acquired forms of cholestasis.
    Stieger B
    Drug Metab Rev; 2010 Aug; 42(3):437-45. PubMed ID: 20028269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hepatobiliary transporters in drug-induced cholestasis: a perspective on the current identifying tools.
    de Lima Toccafondo Vieira M; Tagliati CA
    Expert Opin Drug Metab Toxicol; 2014 Apr; 10(4):581-97. PubMed ID: 24588537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Function and regulation of ATP-binding cassette transport proteins involved in hepatobiliary transport.
    Hooiveld GJ; van Montfoort JE; Meijer DK; Müller M
    Eur J Pharm Sci; 2000 Nov; 12(1):13-30. PubMed ID: 11121730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ticlopidine, a cholestatic liver injury-inducible drug, causes dysfunction of bile formation via diminished biliary secretion of phospholipids: involvement of biliary-excreted glutathione-conjugated ticlopidine metabolites.
    Yoshikado T; Takada T; Yamamoto H; Tan JK; Ito K; Santa T; Suzuki H
    Mol Pharmacol; 2013 Feb; 83(2):552-62. PubMed ID: 23220748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protective Effects of Alisol B 23-Acetate Via Farnesoid X Receptor-Mediated Regulation of Transporters and Enzymes in Estrogen-Induced Cholestatic Liver Injury in Mice.
    Meng Q; Chen X; Wang C; Liu Q; Sun H; Sun P; Huo X; Liu Z; Yao J; Liu K
    Pharm Res; 2015 Nov; 32(11):3688-98. PubMed ID: 26040663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional human induced hepatocytes (hiHeps) with bile acid synthesis and transport capacities: A novel in vitro cholestatic model.
    Ni X; Gao Y; Wu Z; Ma L; Chen C; Wang L; Lin Y; Hui L; Pan G
    Sci Rep; 2016 Dec; 6():38694. PubMed ID: 27934920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hepatocellular bile salt transport: lessons from cholestasis.
    Trauner M; Fickert P; Stauber RE
    Can J Gastroenterol; 2000 Nov; 14 Suppl D():99D-104D. PubMed ID: 11110621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hepatocellular transport in acquired cholestasis: new insights into functional, regulatory and therapeutic aspects.
    Roma MG; Crocenzi FA; Sánchez Pozzi EA
    Clin Sci (Lond); 2008 May; 114(9):567-88. PubMed ID: 18377365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholestatic expression pattern of sinusoidal and canalicular organic anion transport systems in primary cultured rat hepatocytes.
    Rippin SJ; Hagenbuch B; Meier PJ; Stieger B
    Hepatology; 2001 Apr; 33(4):776-82. PubMed ID: 11283839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.