BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 11076508)

  • 1. Highly nonproductive complexes with Anabaena ferredoxin at low ionic strength are induced by nonconservative amino acid substitutions at Glu139 in Anabaena ferredoxin:NADP+ reductase.
    Hurley JK; Faro M; Brodie TB; Hazzard JT; Medina M; Gómez-Moreno C; Tollin G
    Biochemistry; 2000 Nov; 39(45):13695-702. PubMed ID: 11076508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge reversal mutations in a conserved acidic patch in Anabaena ferredoxin can attenuate or enhance electron transfer to ferredoxin:NADP+ reductase by altering protein/protein orientation within the intermediate complex.
    Hurley JK; Schmeits JL; Genzor C; Gómez-Moreno C; Tollin G
    Arch Biochem Biophys; 1996 Sep; 333(1):243-50. PubMed ID: 8806777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrostatic forces involved in orienting Anabaena ferredoxin during binding to Anabaena ferredoxin:NADP+ reductase: site-specific mutagenesis, transient kinetic measurements, and electrostatic surface potentials.
    Hurley JK; Hazzard JT; Martínez-Júlvez M; Medina M; Gómez-Moreno C; Tollin G
    Protein Sci; 1999 Aug; 8(8):1614-22. PubMed ID: 10452605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the role of glutamic acid 139 of Anabaena ferredoxin-NADP+ reductase in the interaction with substrates.
    Faro M; Frago S; Mayoral T; Hermoso JA; Sanz-Aparicio J; Gómez-Moreno C; Medina M
    Eur J Biochem; 2002 Oct; 269(20):4938-47. PubMed ID: 12383252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lys75 of Anabaena ferredoxin-NADP+ reductase is a critical residue for binding ferredoxin and flavodoxin during electron transfer.
    Martínez-Júlvez M; Medina M; Hurley JK; Hafezi R; Brodie TB; Tollin G; Gómez-Moreno C
    Biochemistry; 1998 Sep; 37(39):13604-13. PubMed ID: 9753447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct computer simulation of ferredoxin and FNR complex formation in solution.
    Kovalenko IB; Diakonova AN; Abaturova AM; Riznichenko GY; Rubin AB
    Phys Biol; 2010 May; 7(2):026001. PubMed ID: 20453296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hydrogen bond network in the active site of Anabaena ferredoxin-NADP(+) reductase modulates its catalytic efficiency.
    Sánchez-Azqueta A; Herguedas B; Hurtado-Guerrero R; Hervás M; Navarro JA; Martínez-Júlvez M; Medina M
    Biochim Biophys Acta; 2014 Feb; 1837(2):251-63. PubMed ID: 24200908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. External loops at the ferredoxin-NADP(+) reductase protein-partner binding cavity contribute to substrates allocation.
    Sánchez-Azqueta A; Martínez-Júlvez M; Hervás M; Navarro JA; Medina M
    Biochim Biophys Acta; 2014 Feb; 1837(2):296-305. PubMed ID: 24321506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amino acid residues in Anabaena ferredoxin crucial to interaction with ferredoxin-NADP+ reductase: site-directed mutagenesis and laser flash photolysis.
    Hurley JK; Salamon Z; Meyer TE; Fitch JC; Cusanovich MA; Markley JL; Cheng H; Xia B; Chae YK; Medina M
    Biochemistry; 1993 Sep; 32(36):9346-54. PubMed ID: 8369305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser flash photolysis studies of the kinetics of reduction of ferredoxins and ferredoxin-NADP+ reductases from Anabaena PCC 7119 and spinach: electrostatic effects on intracomplex electron transfer.
    Walker MC; Pueyo JJ; Navarro JA; Gómez-Moreno C; Tollin G
    Arch Biochem Biophys; 1991 Jun; 287(2):351-8. PubMed ID: 1910302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of chemical modification of Anabaena flavodoxin and ferredoxin-NADP+ reductase on the kinetics of interprotein electron transfer reactions.
    Medina M; Gomez-Moreno C; Tollin G
    Eur J Biochem; 1992 Dec; 210(2):577-83. PubMed ID: 1459139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of hydrophobic interactions in the flavodoxin mediated electron transfer from photosystem I to ferredoxin-NADP+ reductase in Anabaena PCC 7119.
    Nogués I; Martínez-Júlvez M; Navarro JA; Hervás M; Armenteros L; de la Rosa MA; Brodie TB; Hurley JK; Tollin G; Gómez-Moreno C; Medina M
    Biochemistry; 2003 Feb; 42(7):2036-45. PubMed ID: 12590591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural analysis of interactions for complex formation between Ferredoxin-NADP+ reductase and its protein partners.
    Mayoral T; Martínez-Júlvez M; Pérez-Dorado I; Sanz-Aparicio J; Gómez-Moreno C; Medina M; Hermoso JA
    Proteins; 2005 May; 59(3):592-602. PubMed ID: 15789405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of a cluster of hydrophobic residues near the FAD cofactor in Anabaena PCC 7119 ferredoxin-NADP+ reductase for optimal complex formation and electron transfer to ferredoxin.
    Martínez-Júlvez M; Nogués I; Faro M; Hurley JK; Brodie TB; Mayoral T; Sanz-Aparicio J; Hermoso JA; Stankovich MT; Medina M; Tollin G; Gómez-Moreno C
    J Biol Chem; 2001 Jul; 276(29):27498-510. PubMed ID: 11342548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Arg100 and Arg264 from Anabaena PCC 7119 ferredoxin-NADP+ reductase for optimal NADP+ binding and electron transfer.
    Martínez-Júlvez M; Hermoso J; Hurley JK; Mayoral T; Sanz-Aparicio J; Tollin G; Gómez-Moreno C; Medina M
    Biochemistry; 1998 Dec; 37(51):17680-91. PubMed ID: 9922134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-function relationships in Anabaena ferredoxin: correlations between X-ray crystal structures, reduction potentials, and rate constants of electron transfer to ferredoxin:NADP+ reductase for site-specific ferredoxin mutants.
    Hurley JK; Weber-Main AM; Stankovich MT; Benning MM; Thoden JB; Vanhooke JL; Holden HM; Chae YK; Xia B; Cheng H; Markley JL; Martinez-Júlvez M; Gómez-Moreno C; Schmeits JL; Tollin G
    Biochemistry; 1997 Sep; 36(37):11100-17. PubMed ID: 9287153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-specific mutagenesis demonstrates that the structural requirements for efficient electron transfer in Anabaena ferredoxin and flavodoxin are highly dependent on the reaction partner: kinetic studies with photosystem I, ferredoxin:NADP+ reductase, and cytochrome c.
    Navarro JA; Hervás M; Genzor CG; Cheddar G; Fillat MF; de la Rosa MA; Gómez-Moreno C; Cheng H; Xia B; Chae YK
    Arch Biochem Biophys; 1995 Aug; 321(1):229-38. PubMed ID: 7639526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ferredoxin-NADP(+) reductase uses the same site for the interaction with ferredoxin and flavodoxin.
    Martínez-Júlvez M; Medina M; Gómez-Moreno C
    J Biol Inorg Chem; 1999 Oct; 4(5):568-78. PubMed ID: 10550685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Further characterization by site-directed mutagenesis of the protein-protein interface in the ferredoxin/ferredoxin:NADP+ reductase system from Anabaena: requirement of a negative charge at position 94 in ferredoxin for rapid electron transfer.
    Hurley JK; Medina M; Gomez-Moreno C; Tollin G
    Arch Biochem Biophys; 1994 Aug; 312(2):480-6. PubMed ID: 8037461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FAD semiquinone stability regulates single- and two-electron reduction of quinones by Anabaena PCC7119 ferredoxin:NADP+ reductase and its Glu301Ala mutant.
    Anusevicius Z; Miseviciene L; Medina M; Martinez-Julvez M; Gomez-Moreno C; Cenas N
    Arch Biochem Biophys; 2005 May; 437(2):144-50. PubMed ID: 15850554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.