These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 11077151)
1. Identification and characterization of ecologically significant prokaryotes in the sediment of freshwater lakes: molecular and cultivation studies. Spring S; Schulze R; Overmann J; Schleifer K FEMS Microbiol Rev; 2000 Dec; 24(5):573-90. PubMed ID: 11077151 [TBL] [Abstract][Full Text] [Related]
2. Distinctive Patterns in the Taxonomical Resolution of Bacterioplankton in the Sediment and Pore Waters of Contrasted Freshwater Lakes. Keshri J; Pradeep Ram AS; Sime-Ngando T Microb Ecol; 2018 Apr; 75(3):662-673. PubMed ID: 28920165 [TBL] [Abstract][Full Text] [Related]
3. Comparative analysis of bacterial diversity in freshwater sediment of a shallow eutrophic lake by molecular and improved cultivation-based techniques. Tamaki H; Sekiguchi Y; Hanada S; Nakamura K; Nomura N; Matsumura M; Kamagata Y Appl Environ Microbiol; 2005 Apr; 71(4):2162-9. PubMed ID: 15812052 [TBL] [Abstract][Full Text] [Related]
4. Novel and unexpected prokaryotic diversity in water and sediments of the alkaline, hypersaline lakes of the Wadi An Natrun, Egypt. Mesbah NM; Abou-El-Ela SH; Wiegel J Microb Ecol; 2007 Nov; 54(4):598-617. PubMed ID: 17450395 [TBL] [Abstract][Full Text] [Related]
5. Distinct distribution patterns of prokaryotes between sediment and water in the Yellow River estuary. Wei G; Li M; Li F; Li H; Gao Z Appl Microbiol Biotechnol; 2016 Nov; 100(22):9683-9697. PubMed ID: 27557722 [TBL] [Abstract][Full Text] [Related]
6. Temporal and Spatial Dynamics of Sediment Anaerobic Ammonium Oxidation (Anammox) Bacteria in Freshwater Lakes. Yang Y; Dai Y; Li N; Li B; Xie S; Liu Y Microb Ecol; 2017 Feb; 73(2):285-295. PubMed ID: 27726034 [TBL] [Abstract][Full Text] [Related]
7. Diversity of sulfur-cycle prokaryotes in freshwater lake sediments investigated using aprA as the functional marker gene. Watanabe T; Kojima H; Takano Y; Fukui M Syst Appl Microbiol; 2013 Sep; 36(6):436-43. PubMed ID: 23810657 [TBL] [Abstract][Full Text] [Related]
8. The microbial composition of three limnologically disparate hypersaline Antarctic lakes. Bowman JP; McCammon SA; Rea SM; McMeekin TA FEMS Microbiol Lett; 2000 Feb; 183(1):81-8. PubMed ID: 10650206 [TBL] [Abstract][Full Text] [Related]
9. Bacteria associated with iron seeps in a sulfur-rich, neutral pH, freshwater ecosystem. Haaijer SC; Harhangi HR; Meijerink BB; Strous M; Pol A; Smolders AJ; Verwegen K; Jetten MS; Op den Camp HJ ISME J; 2008 Dec; 2(12):1231-42. PubMed ID: 18754044 [TBL] [Abstract][Full Text] [Related]
10. Cultivation-independent and -dependent characterization of Bacteria resident beneath John Evans Glacier. Cheng SM; Foght JM FEMS Microbiol Ecol; 2007 Feb; 59(2):318-30. PubMed ID: 17313581 [TBL] [Abstract][Full Text] [Related]
11. Phylogenetic diversity of bacterial communities inhabiting the sediment of Lake Hévíz - a comparison of cultivation and cloning. Krett G; Vágány V; Makk J; Jáger K; Reskóné MN; Márialigeti K; Borsodi AK Acta Microbiol Immunol Hung; 2013 Jun; 60(2):211-35. PubMed ID: 23827752 [TBL] [Abstract][Full Text] [Related]
12. [Phylogeny diversity of the nitrite reductase gene (nirS) in the sediments of the eutrophic East Lake, Wuhan]. Cheng Z; Yang J; Li H; Zhu B; Chen X; Yan Y Wei Sheng Wu Xue Bao; 2011 May; 51(5):667-75. PubMed ID: 21800630 [TBL] [Abstract][Full Text] [Related]
13. A comparison of the benthic bacterial communities within and surrounding Dreissena clusters in lakes. Lohner RN; Sigler V; Mayer CM; Balogh C Microb Ecol; 2007 Oct; 54(3):469-77. PubMed ID: 17308984 [TBL] [Abstract][Full Text] [Related]
14. Planktonic and sedimentary bacterial diversity of Lake Sayram in summer. Fang L; Chen L; Liu Y; Tao W; Zhang Z; Liu H; Tang Y Microbiologyopen; 2015 Oct; 4(5):814-25. PubMed ID: 26242906 [TBL] [Abstract][Full Text] [Related]
15. Sediment prokaryote communities in different sites of eutrophic Lake Taihu and their interactions with environmental factors. Chen N; Yang JS; Qu JH; Li HF; Liu WJ; Li BZ; Wang ET; Yuan HL World J Microbiol Biotechnol; 2015 Jun; 31(6):883-96. PubMed ID: 25772498 [TBL] [Abstract][Full Text] [Related]
16. Identification of acetate-utilizing Bacteria and Archaea in methanogenic profundal sediments of Lake Kinneret (Israel) by stable isotope probing of rRNA. Schwarz JI; Lueders T; Eckert W; Conrad R Environ Microbiol; 2007 Jan; 9(1):223-37. PubMed ID: 17227427 [TBL] [Abstract][Full Text] [Related]
17. Depth-related changes of sediment ammonia-oxidizing microorganisms in a high-altitude freshwater wetland. Liu Y; Zhang J; Zhang X; Xie S Appl Microbiol Biotechnol; 2014 Jun; 98(12):5697-707. PubMed ID: 24619246 [TBL] [Abstract][Full Text] [Related]
18. Identity of major sulfur-cycle prokaryotes in freshwater lake ecosystems revealed by a comprehensive phylogenetic study of the dissimilatory adenylylsulfate reductase. Watanabe T; Kojima H; Fukui M Sci Rep; 2016 Nov; 6():36262. PubMed ID: 27824124 [TBL] [Abstract][Full Text] [Related]
19. Microbial diversity in sediments of saline Qinghai Lake, China: linking geochemical controls to microbial ecology. Dong H; Zhang G; Jiang H; Yu B; Chapman LR; Lucas CR; Fields MW Microb Ecol; 2006 Jan; 51(1):65-82. PubMed ID: 16400537 [TBL] [Abstract][Full Text] [Related]
20. Change in bacterial community structure during in situ biostimulation of subsurface sediment cocontaminated with uranium and nitrate. North NN; Dollhopf SL; Petrie L; Istok JD; Balkwill DL; Kostka JE Appl Environ Microbiol; 2004 Aug; 70(8):4911-20. PubMed ID: 15294831 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]