These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 11077155)

  • 1. Microbiology of flooded rice paddies.
    Liesack W; Schnell S; Revsbech NP
    FEMS Microbiol Rev; 2000 Dec; 24(5):625-45. PubMed ID: 11077155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crop rotation of flooded rice with upland maize impacts the resident and active methanogenic microbial community.
    Breidenbach B; Blaser MB; Klose M; Conrad R
    Environ Microbiol; 2016 Sep; 18(9):2868-85. PubMed ID: 26337675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metatranscriptomics reveals a differential temperature effect on the structural and functional organization of the anaerobic food web in rice field soil.
    Peng J; Wegner CE; Bei Q; Liu P; Liesack W
    Microbiome; 2018 Sep; 6(1):169. PubMed ID: 30231929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paddy soil microbial communities driven by environment- and microbe-microbe interactions: A case study of elevation-resolved microbial communities in a rice terrace.
    Sun W; Xiao E; Pu Z; Krumins V; Dong Y; Li B; Hu M
    Sci Total Environ; 2018 Jan; 612():884-893. PubMed ID: 28886540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Succession of methanotrophs in oxygen-methane counter-gradients of flooded rice paddies.
    Krause S; Lüke C; Frenzel P
    ISME J; 2010 Dec; 4(12):1603-7. PubMed ID: 20574459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methane utilizing plant growth-promoting microbial diversity analysis of flooded paddy ecosystem of India.
    Rani V; Bhatia A; Nain L; Tomar GS; Kaushik R
    World J Microbiol Biotechnol; 2021 Feb; 37(4):56. PubMed ID: 33619649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Community composition of ammonia-oxidizing bacteria and archaea in rice field soil as affected by nitrogen fertilization.
    Wang Y; Ke X; Wu L; Lu Y
    Syst Appl Microbiol; 2009 Feb; 32(1):27-36. PubMed ID: 19091507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbiomes inhabiting rice roots and rhizosphere.
    Ding LJ; Cui HL; Nie SA; Long XE; Duan GL; Zhu YG
    FEMS Microbiol Ecol; 2019 May; 95(5):. PubMed ID: 30916760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of microbial methane production and oxidation by intermittent drainage in rice field soil.
    Ma K; Lu Y
    FEMS Microbiol Ecol; 2011 Mar; 75(3):446-56. PubMed ID: 21198683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methane oxidation and the competition for oxygen in the rice rhizosphere.
    van Bodegom P; Stams F; Mollema L; Boeke S; Leffelaar P
    Appl Environ Microbiol; 2001 Aug; 67(8):3586-97. PubMed ID: 11472935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of water management on the active root-associated microbiota involved in arsenic, iron, and sulfur cycles in rice paddies.
    Zecchin S; Corsini A; Martin M; Cavalca L
    Appl Microbiol Biotechnol; 2017 Sep; 101(17):6725-6738. PubMed ID: 28660288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water management impacts on arsenic behavior and rhizosphere bacterial communities and activities in a rice agro-ecosystem.
    Das S; Chou ML; Jean JS; Liu CC; Yang HJ
    Sci Total Environ; 2016 Jan; 542(Pt A):642-52. PubMed ID: 26546760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrate-dependent iron(II) oxidation in paddy soil.
    Ratering S; Schnell S
    Environ Microbiol; 2001 Feb; 3(2):100-9. PubMed ID: 11321540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of transgenic Bt rice on the active rhizospheric methanogenic archaeal community as revealed by DNA-based stable isotope probing.
    Han C; Liu B; Zhong W
    J Appl Microbiol; 2018 Oct; 125(4):1094-1107. PubMed ID: 29846995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methane emissions and the microbial community in flooded paddies affected by the application of Fe-stabilized natural organic matter.
    Joe EN; Chae HG; Rehman JU; Oh MS; Yoon HY; Shin HJ; Kim PJ; Lee JG; Gwon HS; Jeon JR
    Sci Total Environ; 2024 Mar; 914():169871. PubMed ID: 38185178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rice Paddy Nitrospirae Carry and Express Genes Related to Sulfate Respiration: Proposal of the New Genus "Candidatus Sulfobium".
    Zecchin S; Mueller RC; Seifert J; Stingl U; Anantharaman K; von Bergen M; Cavalca L; Pester M
    Appl Environ Microbiol; 2018 Mar; 84(5):. PubMed ID: 29247059
    [No Abstract]   [Full Text] [Related]  

  • 17. Localization of processes involved in methanogenic degradation of rice straw in anoxic paddy soil.
    Glissmann K; Weber S; Conrad R
    Environ Microbiol; 2001 Aug; 3(8):502-11. PubMed ID: 11578311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sulfate-reducing bacteria and methanogens are involved in arsenic methylation and demethylation in paddy soils.
    Chen C; Li L; Huang K; Zhang J; Xie WY; Lu Y; Dong X; Zhao FJ
    ISME J; 2019 Oct; 13(10):2523-2535. PubMed ID: 31227814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental evaluation of coexistence of denitrifying anaerobic methane-oxidizing archaea and bacteria in a paddy field.
    Ding J; Fu L; Ding ZW; Lu YZ; Cheng SH; Zeng RJ
    Appl Microbiol Biotechnol; 2016 Jan; 100(1):439-46. PubMed ID: 26394860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of iron-reducing microorganisms in anoxic rice paddy soil by 13C-acetate probing.
    Hori T; Müller A; Igarashi Y; Conrad R; Friedrich MW
    ISME J; 2010 Feb; 4(2):267-78. PubMed ID: 19776769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.