BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 11077207)

  • 1. Correlations among evoked potential thresholds, distortion product otoacoustic emissions and hair cell loss following various noise exposures in the chinchilla.
    Hamernik RP; Qiu W
    Hear Res; 2000 Dec; 150(1-2):245-57. PubMed ID: 11077207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of distortion product otoacoustic emissions in the estimation of hearing and sensory cell loss in noise-damaged cochleas.
    Davis B; Qiu W; Hamernik RP
    Hear Res; 2004 Jan; 187(1-2):12-24. PubMed ID: 14698083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noise-induced threshold shift dynamics measured with distortion-product otoacoustic emissions and auditory evoked potentials in chinchillas with inner hair cell deficient cochleas.
    Hamernik RP; Ahroon WA; Jock BM; Bennett JA
    Hear Res; 1998 Apr; 118(1-2):73-82. PubMed ID: 9606062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DPOAE level shifts and ABR threshold shifts compared to detailed analysis of histopathological damage from noise.
    Harding GW; Bohne BA; Ahmad M
    Hear Res; 2002 Dec; 174(1-2):158-71. PubMed ID: 12433407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitivity of distortion product otoacoustic emissions in noise-exposed chinchillas.
    Davis B; Qiu W; Hamernik RP
    J Am Acad Audiol; 2005 Feb; 16(2):69-78. PubMed ID: 15807046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of infrasound on cochlear damage from exposure to a 4 kHz octave band of noise.
    Harding GW; Bohne BA; Lee SC; Salt AN
    Hear Res; 2007 Mar; 225(1-2):128-38. PubMed ID: 17300889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of DPOAEs for assessing hearing loss caused by styrene in the rat.
    Pouyatos B; Campo P; Lataye R
    Hear Res; 2002 Mar; 165(1-2):156-64. PubMed ID: 12031525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antioxidant treatment reduces blast-induced cochlear damage and hearing loss.
    Ewert DL; Lu J; Li W; Du X; Floyd R; Kopke R
    Hear Res; 2012 Mar; 285(1-2):29-39. PubMed ID: 22326291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noise-induced hearing loss in the noise-toughened auditory system.
    Ahroon WA; Hamernik RP
    Hear Res; 1999 Mar; 129(1-2):101-10. PubMed ID: 10190756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interrupted noise exposures: threshold shift dynamics and permanent effects.
    Hamernik RP; Ahroon WA
    J Acoust Soc Am; 1998 Jun; 103(6):3478-88. PubMed ID: 9637033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationship among distortion-product otoacoustic emissions, evoked potential thresholds, and outer hair cells following interrupted noise exposures.
    Subramaniam M; Henderson D; Spongr V
    Ear Hear; 1994 Aug; 15(4):299-309. PubMed ID: 7958529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of high-frequency interrupted noise exposures on evoked-potential thresholds, distortion-product otoacoustic emissions, and outer hair cell loss.
    Subramaniam M; Henselman LW; Spongr V; Henderson D; Powers NL
    Ear Hear; 1995 Aug; 16(4):372-81. PubMed ID: 8549893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. R-phenylisopropyladenosine attenuates noise-induced hearing loss in the chinchilla.
    Hu BH; Zheng XY; McFadden SL; Kopke RD; Henderson D
    Hear Res; 1997 Nov; 113(1-2):198-206. PubMed ID: 9387999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of tuning curve variables and threshold measures in the estimation of sensory cell loss.
    Ahroon WA; Davis RI; Hamernik RP
    Audiology; 1993; 32(4):244-59. PubMed ID: 8343081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evoked-potential thresholds and cubic distortion product otoacoustic emissions in the chinchilla following carboplatin treatment and noise exposure.
    Jock BM; Hamernik RP; Aldrich LG; Ahroon WA; Petriello KL; Johnson AR
    Hear Res; 1996 Jul; 96(1-2):179-90. PubMed ID: 8817317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histopathological differences between temporary and permanent threshold shift.
    Nordmann AS; Bohne BA; Harding GW
    Hear Res; 2000 Jan; 139(1-2):13-30. PubMed ID: 10601709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporary DPOAE level shifts, ABR threshold shifts and histopathological damage following below-critical-level noise exposures.
    Harding GW; Bohne BA
    Hear Res; 2004 Oct; 196(1-2):94-108. PubMed ID: 15464306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in distortion product otoacoustic emissions and outer hair cells following interrupted noise exposures.
    Subramaniam M; Salvi RJ; Spongr VP; Henderson D; Powers NL
    Hear Res; 1994 Apr; 74(1-2):204-16. PubMed ID: 8040089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cubic distortion product otoacoustic emissions from the normal and noise-damaged chinchilla cochlea.
    Hamernik RP; Ahroon WA; Lei SF
    J Acoust Soc Am; 1996 Aug; 100(2 Pt 1):1003-12. PubMed ID: 8759953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cubic distortion product otoacoustic emissions in young and aged chinchillas exposed to low-frequency noise.
    McFadden SL; Campo P
    J Acoust Soc Am; 1998 Oct; 104(4):2290-7. PubMed ID: 10491693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.