BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 11077980)

  • 1. Inhibition of small conductance K+ -channels attenuated melatonin-induced relaxation of serotonin-contracted rat gastric fundus.
    Storr M; Schusdziarra V; Allescher HD
    Can J Physiol Pharmacol; 2000 Oct; 78(10):799-806. PubMed ID: 11077980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrergic and purinergic interplay in inhibitory transmission in rat gastric fundus.
    Vetri T; Bonvissuto F; Marino A; Postorino A
    Auton Autacoid Pharmacol; 2007 Jul; 27(3):151-7. PubMed ID: 17584445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of a selective guanylate cyclase inhibitor, and of the contraction level, on nitrergic relaxations in the gastric fundus.
    Lefebvre RA
    Br J Pharmacol; 1998 Aug; 124(7):1439-48. PubMed ID: 9723956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for a modulatory role of orexin A on the nitrergic neurotransmission in the mouse gastric fundus.
    Baccari MC; Bani D; Calamai F
    Regul Pept; 2009 Apr; 154(1-3):54-9. PubMed ID: 19150469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrergic relaxation in rat gastric fundus: influence of mechanism of induced tone and possible role of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase.
    Van Geldre LA; Lefebvre RA
    Life Sci; 2004 May; 74(26):3259-74. PubMed ID: 15094326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of potassium channels in the nitrergic nerve stimulation-induced vasodilatation in the guinea-pig isolated basilar artery.
    Jiang F; Li CG; Rand MJ
    Br J Pharmacol; 1998 Jan; 123(1):106-12. PubMed ID: 9484860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of a glibenclamide-sensitive mechanism in the nitrergic neurotransmission of the pig intravesical ureter.
    Hernández M; Prieto D; Orensanz LM; Barahona MV; Jiménez-Cidre M; Rivera L; García-Sacristán A; Simonsen U
    Br J Pharmacol; 1997 Feb; 120(4):609-16. PubMed ID: 9051298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibitory pathways in the circular muscle of rat jejunum.
    Vanneste G; Robberecht P; Lefebvre RA
    Br J Pharmacol; 2004 Sep; 143(1):107-18. PubMed ID: 15302684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions between histaminergic and cholinergic pathways of gastric motility regulation.
    Milenov K; Todorov S; Vassileva M; Zamfirova R; Shahbazian A
    Methods Find Exp Clin Pharmacol; 1996; 18(1):33-9. PubMed ID: 8721254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for a role for nitric oxide in relation of the frog oesophageal body to electrical field stimulation.
    Williams SJ; Parsons ME
    Br J Pharmacol; 1997 Sep; 122(1):179-85. PubMed ID: 9298545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the interaction between cholinergic and nitrergic neurotransmission in the pig gastric fundus.
    Leclere PG; Lefebvre RA
    Br J Pharmacol; 1998 Dec; 125(8):1779-87. PubMed ID: 9886770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Guanylate cyclase regulates ileal longitudinal muscle contractions induced by neurogenic nitrergic activity in the rat.
    Oliveira JM; Gonçalves J
    Clin Exp Pharmacol Physiol; 2010 Mar; 37(3):375-7. PubMed ID: 19671068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscarinic modulation of nitrergic neurotransmission in guinea-pig gastric fundus.
    Kortezova NI; Shikova LI; Milusheva EA; Itzev DE; Bagaev VA; Mizhorkova ZN
    Neurogastroenterol Motil; 2004 Apr; 16(2):155-65. PubMed ID: 15086869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of peptide histidine isoleucine in non-adrenergic non-cholinergic relaxation of the rat gastric fundus induced by high-frequency neuronal firing.
    Currò D; De Marco T; Preziosi P
    Naunyn Schmiedebergs Arch Pharmacol; 2002 Dec; 366(6):578-86. PubMed ID: 12444500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of neurogenic excitatory and inhibitory motor responses and their control by 5-HT(4) receptors in circular smooth muscle of pig descending colon.
    Priem EK; Lefebvre RA
    Eur J Pharmacol; 2011 Sep; 667(1-3):365-74. PubMed ID: 21723862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of nitric oxide, vasoactive intestinal polypeptide, and ATP in inhibitory neurotransmission in human jejunum.
    Murr MM; Balsiger BM; Farrugia G; Sarr MG
    J Surg Res; 1999 Jun; 84(1):8-12. PubMed ID: 10334881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional evidence for purinergic inhibitory neuromuscular transmission in the mouse internal anal sphincter.
    McDonnell B; Hamilton R; Fong M; Ward SM; Keef KD
    Am J Physiol Gastrointest Liver Physiol; 2008 Apr; 294(4):G1041-51. PubMed ID: 18308858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Actions of NO donors and endogenous nitrergic transmitter on the longitudinal muscle of rat ileum in vitro: mechanisms involved.
    Tanović A; Jiménez M; Fernández E
    Life Sci; 2001 Jul; 69(10):1143-54. PubMed ID: 11508347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple-signaling pathways are involved in the inhibitory effects of galangin on urinary bladder contractility.
    Dambros M; de Jongh R; van Koeveringe GA; van Deutekom M; De Mey JG; Palma PC; van Kerrebroeck PE
    Neurourol Urodyn; 2005; 24(4):369-73. PubMed ID: 15924354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A1 receptors mediate adenosine inhibitory effects in mouse ileum via activation of potassium channels.
    Zizzo MG; Bonomo A; Belluardo N; Mulè F; Serio R
    Life Sci; 2009 May; 84(21-22):772-8. PubMed ID: 19324061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.