These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 110785)
1. Altered membrane proteins in a minicell-producing mutant of Bacillus subtilis. Buchanan CE J Bacteriol; 1979 Jul; 139(1):305-7. PubMed ID: 110785 [TBL] [Abstract][Full Text] [Related]
2. Membrane characteristics of the hemA mutant of Bacillus subtilis. Miczák A; Prágai B; Taródi B Acta Microbiol Acad Sci Hung; 1980; 27(1):99-102. PubMed ID: 6774596 [TBL] [Abstract][Full Text] [Related]
3. Transformation in Bacillus subtilis: properties of DNA-binding-deficient mutants. Smith H; de Vos W; Bron S J Bacteriol; 1983 Jan; 153(1):12-20. PubMed ID: 6401276 [TBL] [Abstract][Full Text] [Related]
4. Altered arrangement of proteins in the spore coat of a germination mutant of Bacillus subtilis. Jenkinson HF J Gen Microbiol; 1983 Jun; 129(6):1945-58. PubMed ID: 6415224 [TBL] [Abstract][Full Text] [Related]
6. Localization and quantitation of proteins characteristic of the complexed membrane of Bacillus subtilis. Horiuchi S; Marty-Mazars D; Tai PC; Davis BD J Bacteriol; 1983 Jun; 154(3):1215-21. PubMed ID: 6406428 [TBL] [Abstract][Full Text] [Related]
7. Clonal analysis of cell division in the Bacillus subtilis div IV-B1 minicell-producing mutant. Coyne SI; Mendelson NH J Bacteriol; 1974 Apr; 118(1):15-20. PubMed ID: 4206868 [TBL] [Abstract][Full Text] [Related]
8. Identification of flagellin associated with the Bacillus subtilis folded chromosome. Guérout-Fleury AM; Le Hégarat F; Hirschbein L J Bacteriol; 1980 Mar; 141(3):1432-4. PubMed ID: 6767711 [TBL] [Abstract][Full Text] [Related]
9. Quantitation of de novo localized (15)N-labeled lipoproteins and membrane proteins having one and two transmembrane segments in a Bacillus subtilis secA temperature-sensitive mutant using 2D-PAGE and MALDI-TOF MS. Bunai K; Nozaki M; Kakeshita H; Nemoto T; Yamane K J Proteome Res; 2005; 4(3):826-36. PubMed ID: 15952729 [TBL] [Abstract][Full Text] [Related]
10. Proteins of ribosome-bearing and free-membrane domains in Bacillus subtilis. Marty-Mazars D; Horiuchi S; Tai PC; Davis BD J Bacteriol; 1983 Jun; 154(3):1381-8. PubMed ID: 6406431 [TBL] [Abstract][Full Text] [Related]
11. Appearance of a ribonucleic acid polymerase-binding protein in asporogenous mutants of Bacillus subtilis. Greenleaf AL; Losick R J Bacteriol; 1973 Oct; 116(1):290-4. PubMed ID: 4200841 [TBL] [Abstract][Full Text] [Related]
12. Cell division suppression in the Bacillus subtilis div IC-A1 minicell-producing mutant. Mendelson NH J Bacteriol; 1975 Mar; 121(3):1166-72. PubMed ID: 803958 [TBL] [Abstract][Full Text] [Related]
13. Characterization of a stable L-form of Bacillus subtilis 168. Gilpin RW; Young FE; Chatterjee AN J Bacteriol; 1973 Jan; 113(1):486-99. PubMed ID: 4631836 [TBL] [Abstract][Full Text] [Related]
14. Altered accumulation of a membrane protein unique to a membrane-deoxyribonucleic acid complex in a dna initiation mutant of Bacillus subtilis. Harmon JM; Taber HW J Bacteriol; 1977 Jun; 130(3):1224-33. PubMed ID: 405373 [TBL] [Abstract][Full Text] [Related]
15. Characterization of succinic dehydrogenase mutants of Bacillus subtilis by crossed immunoelectrophoresis. Rutberg B; Hederstedt L; Holmgren E; Rutberg L J Bacteriol; 1978 Oct; 136(1):304-11. PubMed ID: 101513 [TBL] [Abstract][Full Text] [Related]
16. Purification and characterization of an inhibitor of phospholipase A1 in Bacillus subtilis. Krag SS; Lennarz WJ J Biol Chem; 1975 Apr; 250(8):2813-22. PubMed ID: 804482 [TBL] [Abstract][Full Text] [Related]
17. Ribosomal proteins from streptomycin-resistant and dependent mutants, and revertants from streptomycin-dependence to independence in Bacillus subtilis. Ito T; Kosugi H; Higo K; Osawa S Mol Gen Genet; 1975 Sep; 139(4):293-301. PubMed ID: 810662 [TBL] [Abstract][Full Text] [Related]
18. Protein composition of cell and forespore membranes of Bacillus subtilis. Goldman RC J Supramol Struct; 1973; 1(3):185-93. PubMed ID: 4217405 [No Abstract] [Full Text] [Related]
19. The ftsH gene of Bacillus subtilis is involved in major cellular processes such as sporulation, stress adaptation and secretion. Deuerling E; Mogk A; Richter C; Purucker M; Schumann W Mol Microbiol; 1997 Mar; 23(5):921-33. PubMed ID: 9076729 [TBL] [Abstract][Full Text] [Related]