BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 11078517)

  • 1. A dual-specificity aminoacyl-tRNA synthetase in the deep-rooted eukaryote Giardia lamblia.
    Bunjun S; Stathopoulos C; Graham D; Min B; Kitabatake M; Wang AL; Wang CC; Vivarès CP; Weiss LM; Söll D
    Proc Natl Acad Sci U S A; 2000 Nov; 97(24):12997-3002. PubMed ID: 11078517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cysteinyl-tRNA(Cys) formation in Methanocaldococcus jannaschii: the mechanism is still unknown.
    Ruan B; Nakano H; Tanaka M; Mills JA; DeVito JA; Min B; Low KB; Battista JR; Söll D
    J Bacteriol; 2004 Jan; 186(1):8-14. PubMed ID: 14679218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cysteinyl-tRNA synthetase is not essential for viability of the archaeon Methanococcus maripaludis.
    Stathopoulos C; Kim W; Li T; Anderson I; Deutsch B; Palioura S; Whitman W; Söll D
    Proc Natl Acad Sci U S A; 2001 Dec; 98(25):14292-7. PubMed ID: 11717392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of cysteinyl-tRNACys by a prolyl-tRNA synthetase.
    Zhang CM; Hou YM
    RNA Biol; 2004 May; 1(1):35-41. PubMed ID: 17194940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of the prolyl-tRNA synthetase from the eukaryotic pathogen Giardia lamblia.
    Larson ET; Kim JE; Napuli AJ; Verlinde CL; Fan E; Zucker FH; Van Voorhis WC; Buckner FS; Hol WG; Merritt EA
    Acta Crystallogr D Biol Crystallogr; 2012 Sep; 68(Pt 9):1194-200. PubMed ID: 22948920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cysteinyl-tRNA formation: the last puzzle of aminoacyl-tRNA synthesis.
    Li T; Graham DE; Stathopoulos C; Haney PJ; Kim HS; Vothknecht U; Kitabatake M; Hong KW; Eggertsson G; Curnow AW; Lin W; Celic I; Whitman W; Söll D
    FEBS Lett; 1999 Dec; 462(3):302-6. PubMed ID: 10622715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One polypeptide with two aminoacyl-tRNA synthetase activities.
    Stathopoulos C; Li T; Longman R; Vothknecht UC; Becker HD; Ibba M; Söll D
    Science; 2000 Jan; 287(5452):479-82. PubMed ID: 10642548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methanococcus jannaschii prolyl-cysteinyl-tRNA synthetase possesses overlapping amino acid binding sites.
    Stathopoulos C; Jacquin-Becker C; Becker HD; Li T; Ambrogelly A; Longman R; Söll D
    Biochemistry; 2001 Jan; 40(1):46-52. PubMed ID: 11141055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cysteine activation is an inherent in vitro property of prolyl-tRNA synthetases.
    Ahel I; Stathopoulos C; Ambrogelly A; Sauerwald A; Toogood H; Hartsch T; Söll D
    J Biol Chem; 2002 Sep; 277(38):34743-8. PubMed ID: 12130657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structural basis of cysteine aminoacylation of tRNAPro by prolyl-tRNA synthetases.
    Kamtekar S; Kennedy WD; Wang J; Stathopoulos C; Söll D; Steitz TA
    Proc Natl Acad Sci U S A; 2003 Feb; 100(4):1673-8. PubMed ID: 12578991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methanocaldococcus jannaschii prolyl-tRNA synthetase charges tRNA(Pro) with cysteine.
    Ambrogelly A; Ahel I; Polycarpo C; Bunjun-Srihari S; Krett B; Jacquin-Becker C; Ruan B; Köhrer C; Stathopoulos C; RajBhandary UL; Söll D
    J Biol Chem; 2002 Sep; 277(38):34749-54. PubMed ID: 12130658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An aminoacyl tRNA synthetase whose sequence fits into neither of the two known classes.
    Fàbrega C; Farrow MA; Mukhopadhyay B; de Crécy-Lagard V; Ortiz AR; Schimmel P
    Nature; 2001 May; 411(6833):110-4. PubMed ID: 11333988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A cysteinyl-tRNA synthetase variant confers resistance against selenite toxicity and decreases selenocysteine misincorporation.
    Hoffman KS; Vargas-Rodriguez O; Bak DW; Mukai T; Woodward LK; Weerapana E; Söll D; Reynolds NM
    J Biol Chem; 2019 Aug; 294(34):12855-12865. PubMed ID: 31296657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of cysteinyl-tRNA(Cys) by a genome that lacks the normal cysteine-tRNA synthetase.
    Lipman RS; Sowers KR; Hou YM
    Biochemistry; 2000 Jul; 39(26):7792-8. PubMed ID: 10869184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aminoacyl-tRNA formation in the extreme thermophile Thermus thermophilus.
    Feng L; Stathopoulos C; Ahel I; Mitra A; Tumbula-Hansen D; Hartsch T; Söll D
    Extremophiles; 2002 Apr; 6(2):167-74. PubMed ID: 12013438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Divergent adaptation of tRNA recognition by Methanococcus jannaschii prolyl-tRNA synthetase.
    Burke B; Lipman RS; Shiba K; Musier-Forsyth K; Hou YM
    J Biol Chem; 2001 Jun; 276(23):20286-91. PubMed ID: 11342535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA-dependent cysteine biosynthesis in archaea.
    Sauerwald A; Zhu W; Major TA; Roy H; Palioura S; Jahn D; Whitman WB; Yates JR; Ibba M; Söll D
    Science; 2005 Mar; 307(5717):1969-72. PubMed ID: 15790858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence divergence of seryl-tRNA synthetases in archaea.
    Kim HS; Vothknecht UC; Hedderich R; Celic I; Söll D
    J Bacteriol; 1998 Dec; 180(24):6446-9. PubMed ID: 9851985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cysteinyl-tRNA synthetase: determination of the last E. coli aminoacyl-tRNA synthetase primary structure.
    Eriani G; Dirheimer G; Gangloff J
    Nucleic Acids Res; 1991 Jan; 19(2):265-9. PubMed ID: 2014166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fundamentals behind the specificity of Cysteinyl-tRNA synthetase: MD and QM/MM joint investigations.
    Chen B; Mansour B; Zheng E; Liu Y; Gauld JW; Wang Q
    Proteins; 2023 Mar; 91(3):354-362. PubMed ID: 36196751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.