BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 11078517)

  • 21. Cysteinyl-tRNA formation and prolyl-tRNA synthetase.
    Jacquin-Becker C; Ahel I; Ambrogelly A; Ruan B; Söll D; Stathopoulos C
    FEBS Lett; 2002 Mar; 514(1):34-6. PubMed ID: 11904177
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Essentiality Assessment of Cysteinyl and Lysyl-tRNA Synthetases of Mycobacterium smegmatis.
    Ravishankar S; Ambady A; Swetha RG; Anbarasu A; Ramaiah S; Sambandamurthy VK
    PLoS One; 2016; 11(1):e0147188. PubMed ID: 26794499
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Substrate specificity of bacterial prolyl-tRNA synthetase editing domain is controlled by a tunable hydrophobic pocket.
    Kumar S; Das M; Hadad CM; Musier-Forsyth K
    J Biol Chem; 2012 Jan; 287(5):3175-84. PubMed ID: 22128149
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Initial position of aminoacylation of individual Escherichia coli, yeast, and calf liver transfer RNAs.
    Chinault AC; Tan KH; Hassur SM; Hecht SM
    Biochemistry; 1977 Feb; 16(4):766-76. PubMed ID: 319826
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Clustering and co-transcription of the Bacillus subtilis genes encoding the aminoacyl-tRNA synthetases specific for glutamate and for cysteine and the first enzyme for cysteine biosynthesis.
    Gagnon Y; Breton R; Putzer H; Pelchat M; Grunberg-Manago M; Lapointe J
    J Biol Chem; 1994 Mar; 269(10):7473-82. PubMed ID: 7510287
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prevention of mis-aminoacylation of a dual-specificity aminoacyl-tRNA synthetase.
    Lipman RS; Wang J; Sowers KR; Hou YM
    J Mol Biol; 2002 Feb; 315(5):943-9. PubMed ID: 11827467
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cysteinyl-tRNA synthetase is a direct descendant of the first aminoacyl-tRNA synthetase.
    Avalos J; Corrochano LM; Brenner S
    FEBS Lett; 1991 Jul; 286(1-2):176-80. PubMed ID: 1864365
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Domain-domain communication for tRNA aminoacylation: the importance of covalent connectivity.
    Zhang CM; Hou YM
    Biochemistry; 2005 May; 44(19):7240-9. PubMed ID: 15882062
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An archaeal aminoacyl-tRNA synthetase missing from genomic analysis.
    Hamann CS; Sowers KR; Lipman RS; Hou YM
    J Bacteriol; 1999 Sep; 181(18):5880-4. PubMed ID: 10482537
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemical modification and site-directed mutagenesis of the single cysteine in motif 3 of class II Escherichia coli prolyl-tRNA synthetase.
    Stehlin C; Heacock DH; Liu H; Musier-Forsyth K
    Biochemistry; 1997 Mar; 36(10):2932-8. PubMed ID: 9062123
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases.
    Sherlin LD; Bullock TL; Newberry KJ; Lipman RS; Hou YM; Beijer B; Sproat BS; Perona JJ
    J Mol Biol; 2000 Jun; 299(2):431-46. PubMed ID: 10860750
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Archaeal aminoacyl-tRNA synthesis: diversity replaces dogma.
    Tumbula D; Vothknecht UC; Kim HS; Ibba M; Min B; Li T; Pelaschier J; Stathopoulos C; Becker H; Söll D
    Genetics; 1999 Aug; 152(4):1269-76. PubMed ID: 10430557
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition of Arabidopsis growth by the allelopathic compound azetidine-2-carboxylate is due to the low amino acid specificity of cytosolic prolyl-tRNA synthetase.
    Lee J; Joshi N; Pasini R; Dobson RC; Allison J; Leustek T
    Plant J; 2016 Oct; 88(2):236-246. PubMed ID: 27332880
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A unique insertion in the CP1 domain of Giardia lamblia leucyl-tRNA synthetase.
    Zhou XL; Yao P; Ruan LL; Zhu B; Luo J; Qu LH; Wang ED
    Biochemistry; 2009 Feb; 48(6):1340-7. PubMed ID: 19170608
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Redundant synthesis of cysteinyl-tRNACys in Methanosarcina mazei.
    Hauenstein SI; Perona JJ
    J Biol Chem; 2008 Aug; 283(32):22007-17. PubMed ID: 18559341
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Understanding species-specific differences in substrate recognition by Escherichia coli and human prolyl-tRNA synthetases.
    Musier-Forsyth K; Stehlin C; Burke B; Liu H
    Nucleic Acids Symp Ser; 1997; (36):5-7. PubMed ID: 9478190
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transfer RNA modulates the editing mechanism used by class II prolyl-tRNA synthetase.
    Splan KE; Ignatov ME; Musier-Forsyth K
    J Biol Chem; 2008 Mar; 283(11):7128-34. PubMed ID: 18180290
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evolutionary coadaptation of the motif 2--acceptor stem interaction in the class II prolyl-tRNA synthetase system.
    Burke B; Yang F; Chen F; Stehlin C; Chan B; Musier-Forsyth K
    Biochemistry; 2000 Dec; 39(50):15540-7. PubMed ID: 11112540
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cys-tRNA(Pro) editing by Haemophilus influenzae YbaK via a novel synthetase.YbaK.tRNA ternary complex.
    An S; Musier-Forsyth K
    J Biol Chem; 2005 Oct; 280(41):34465-72. PubMed ID: 16087664
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Species-specific differences in amino acid editing by class II prolyl-tRNA synthetase.
    Beuning PJ; Musier-Forsyth K
    J Biol Chem; 2001 Aug; 276(33):30779-85. PubMed ID: 11408489
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.