BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 11078933)

  • 1. Spinal kappa-opioid system plays an important role in suppressing morphine withdrawal syndrome in the rat.
    Cui CL; Wu LZ; Han JS
    Neurosci Lett; 2000 Dec; 295(1-2):45-8. PubMed ID: 11078933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antinociceptive effects of morphine and U-50,488H on vaginal distension in the anesthetized rat.
    Friese N; Diop L; Lambert C; Rivière PJ; Dahl SG
    Life Sci; 1997; 61(16):1559-70. PubMed ID: 9353165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of nitric oxide in the development of opioid withdrawal induced by naloxone after acute treatment with mu- and kappa-opioid receptor agonists.
    Capasso A; Sorrentino L; Pinto A
    Eur J Pharmacol; 1998 Oct; 359(2-3):127-31. PubMed ID: 9832382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of differential modulation of mu-, delta- and kappa-opioid systems on bicuculline-induced convulsions in the mouse.
    Yajima Y; Narita M; Takahashi-Nakano Y; Misawa M; Nagase H; Mizoguchi H; Tseng LF; Suzuki T
    Brain Res; 2000 Apr; 862(1-2):120-6. PubMed ID: 10799676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anticonvulsive effects of kappa-opioid receptor modulation in an animal model of ethanol withdrawal.
    Beadles-Bohling AS; Wiren KM
    Genes Brain Behav; 2006 Aug; 5(6):483-96. PubMed ID: 16923153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of kappa-opioid receptors inhibits pruritus evoked by subcutaneous or intrathecal administration of morphine in monkeys.
    Ko MC; Lee H; Song MS; Sobczyk-Kojiro K; Mosberg HI; Kishioka S; Woods JH; Naughton NN
    J Pharmacol Exp Ther; 2003 Apr; 305(1):173-9. PubMed ID: 12649366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Withdrawal contractures of guinea-pig isolated ileum after acute activation of kappa-opioid receptors.
    Morrone LA; Romanelli L; Amico MC; Valeri P
    Br J Pharmacol; 1993 May; 109(1):48-52. PubMed ID: 8388301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Schild (apparent pA2) analysis of a kappa-opioid antagonist in Planaria.
    Raffa RB; Baron DA; Tallarida RJ
    Eur J Pharmacol; 2006 Jul; 540(1-3):200-1. PubMed ID: 16737694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prodynorphin gene deficiency potentiates nalbuphine-induced behavioral sensitization and withdrawal syndrome in mice.
    Shin EJ; Jang CG; Bing G; Park DH; Oh CH; Koo KH; Oh KW; Yamada K; Nabeshima T; Kim HC
    Drug Alcohol Depend; 2009 Sep; 104(1-2):175-84. PubMed ID: 19559544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opioid antagonist profile of SC nor-binaltorphimine in the formalin paw assay.
    Wettstein JG; Grouhel A
    Pharmacol Biochem Behav; 1996 Feb; 53(2):411-6. PubMed ID: 8808151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different roles of mu-, delta- and kappa-opioid receptors in ethanol-associated place preference in rats exposed to conditioned fear stress.
    Matsuzawa S; Suzuki T; Misawa M; Nagase H
    Eur J Pharmacol; 1999 Feb; 368(1):9-16. PubMed ID: 10096764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasonic vocalizations of preweanling rats: involvement of both alpha(2)-adrenoceptor and kappa-opioid receptor systems.
    Nazarian A; Krall CM; Osburn JR; McDougall SA
    Eur J Pharmacol; 2001 Mar; 415(2-3):165-71. PubMed ID: 11274995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The kappa-opioid receptor agonist U50,488H induces acute physical dependence in guinea-pigs.
    Brent PJ; Chahl LA; Cantarell PA; Kavanagh C
    Eur J Pharmacol; 1993 Sep; 241(2-3):149-56. PubMed ID: 7902288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of spinal kappa opioid receptors in the blockade of the development of antinociceptive tolerance to morphine.
    Takahashi M; Senda T; Kaneto H
    Eur J Pharmacol; 1991 Aug; 200(2-3):293-7. PubMed ID: 1664330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Focal kappa-opioid receptor-mediated dependence and withdrawal in the nucleus paragigantocellularis.
    Sinchaisuk S; Ho IK; Rockhold RW
    Pharmacol Biochem Behav; 2002 Dec; 74(1):241-52. PubMed ID: 12376173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protracted withdrawal from ethanol and enhanced responsiveness stress: regulation via the dynorphin/kappa opioid receptor system.
    Gillett K; Harshberger E; Valdez GR
    Alcohol; 2013 Aug; 47(5):359-65. PubMed ID: 23731692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TRK-820, a selective kappa-opioid agonist, produces potent antinociception in cynomolgus monkeys.
    Endoh T; Tajima A; Izumimoto N; Suzuki T; Saitoh A; Suzuki T; Narita M; Kamei J; Tseng LF; Mizoguchi H; Nagase H
    Jpn J Pharmacol; 2001 Mar; 85(3):282-90. PubMed ID: 11325021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression by nor-binaltorphimine of kappa opioid-mediated diuresis in rats.
    Takemori AE; Schwartz MM; Portoghese PS
    J Pharmacol Exp Ther; 1988 Dec; 247(3):971-4. PubMed ID: 2849679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kappa-opioid receptor-mediated antinociception in the rat. II. Supraspinal in addition to spinal sites of action.
    Millan MJ; Członkowski A; Lipkowski A; Herz A
    J Pharmacol Exp Ther; 1989 Oct; 251(1):342-50. PubMed ID: 2571723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of kappa-opioid receptor mechanisms in the calcitonin-induced potentiation of opioid effects at the hypothalamus-pituitary-adrenocortical axis.
    Milanés MV; Vargas ML; Martín MI
    Eur J Pharmacol; 1994 Dec; 271(1):103-9. PubMed ID: 7698193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.