These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 11079424)

  • 1. Sensory processing of water currents by fishes.
    Montgomery J; Carton G; Voigt R; Baker C; Diebel C
    Philos Trans R Soc Lond B Biol Sci; 2000 Sep; 355(1401):1325-7. PubMed ID: 11079424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The overlapping roles of the inner ear and lateral line: the active space of dipole source detection.
    Braun CB; Coombs S
    Philos Trans R Soc Lond B Biol Sci; 2000 Sep; 355(1401):1115-9. PubMed ID: 11079381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Information-processing demands in electrosensory and mechanosensory lateral line systems.
    Coombs S; New JG; Nelson M
    J Physiol Paris; 2002; 96(5-6):341-54. PubMed ID: 14692483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrodynamic detection by cupulae in a lateral line canal: functional relations between physics and physiology.
    van Netten SM
    Biol Cybern; 2006 Jan; 94(1):67-85. PubMed ID: 16315048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hair cell heterogeneity and ultrasonic hearing: recent advances in understanding fish hearing.
    Popper AN
    Philos Trans R Soc Lond B Biol Sci; 2000 Sep; 355(1401):1277-80. PubMed ID: 11079414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The neuroecology of cartilaginous fishes: sensory strategies for survival.
    Collin SP
    Brain Behav Evol; 2012; 80(2):80-96. PubMed ID: 22986825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responses of hatchling Xenopus tadpoles to water currents: first function of lateral line receptors without cupulae.
    Roberts A; Feetham B; Pajak M; Teare T
    J Exp Biol; 2009 Apr; 212(Pt 7):914-21. PubMed ID: 19282488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First detection of neuropeptide Y (NPY)-like immunoreactivity in the lateral line: presence and distribution in the neuromasts of the Antarctic notothenioid fish Trematomus bernacchii.
    Bottaro M; Ferrando S; Ravera S; Vacchi M; Gallus L; Gambardella C; Tagliafierro G
    Neurosci Lett; 2009 Jul; 458(1):37-42. PubMed ID: 19442873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of the lateral line and vision on body kinematics and hydrodynamic preference of rainbow trout in turbulent flow.
    Liao JC
    J Exp Biol; 2006 Oct; 209(Pt 20):4077-90. PubMed ID: 17023602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal precision and reliability in the velocity regime of a hair-cell sensory system: the mechanosensory lateral line of goldfish, Carassius auratus.
    Goulet J; van Hemmen JL; Jung SN; Chagnaud BP; Scholze B; Engelmann J
    J Neurophysiol; 2012 May; 107(10):2581-93. PubMed ID: 22378175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural transduction in Xenopus laevis lateral line system.
    Strelioff D; Honrubia V
    J Neurophysiol; 1978 Mar; 41(2):432-44. PubMed ID: 650276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanical senses of aquatic organisms.
    Hawkins AD
    Symp Soc Exp Biol; 1985; 39():425-58. PubMed ID: 3914724
    [No Abstract]   [Full Text] [Related]  

  • 13. The role of the lateral line in active drag reduction by clupeoid fishes.
    Lighthill J
    Symp Soc Exp Biol; 1995; 49():35-48. PubMed ID: 8571234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural diversity of the ordinary and specialized lateral line organs.
    Cernuda-Cernuda R; García-Fernández JM
    Microsc Res Tech; 1996 Jul; 34(4):302-12. PubMed ID: 8807615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coping with flow: behavior, neurophysiology and modeling of the fish lateral line system.
    Mogdans J; Bleckmann H
    Biol Cybern; 2012 Dec; 106(11-12):627-42. PubMed ID: 23099522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural responses of goldfish lateral line afferents to vortex motions.
    Chagnaud BP; Bleckmann H; Engelmann J
    J Exp Biol; 2006 Jan; 209(Pt 2):327-42. PubMed ID: 16391355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thalamic center for the lateral line system in the catfish Ictalurus nebulosus: evoked potential evidence.
    Finger TE; Bullock TH
    J Neurobiol; 1982 Jan; 13(1):39-47. PubMed ID: 7057177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sub-lethal concentrations of waterborne copper are toxic to lateral line neuromasts in zebrafish (Danio rerio).
    Hernández PP; Moreno V; Olivari FA; Allende ML
    Hear Res; 2006 Mar; 213(1-2):1-10. PubMed ID: 16386394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensory ecology of the fish lateral-line system: Morphological and physiological adaptations for the perception of hydrodynamic stimuli.
    Mogdans J
    J Fish Biol; 2019 Jul; 95(1):53-72. PubMed ID: 30873616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of infrasound and linear acceleration in fishes.
    Sand O; Karlsen HE
    Philos Trans R Soc Lond B Biol Sci; 2000 Sep; 355(1401):1295-8. PubMed ID: 11079418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.