These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 11079511)

  • 1. Effects of injury proneness and task difficulty on joint kinetic variability.
    James CR; Dufek JS; Bates BT
    Med Sci Sports Exerc; 2000 Nov; 32(11):1833-44. PubMed ID: 11079511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lower extremity variability changes with drop-landing height manipulations.
    Nordin AD; Dufek JS
    Res Sports Med; 2017; 25(2):144-155. PubMed ID: 28105865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of the lower extremities during drop landings from three heights.
    McNitt-Gray JL
    J Biomech; 1993 Sep; 26(9):1037-46. PubMed ID: 8408086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Weighted vest effects on impact forces and joint work during vertical jump landings in men and women.
    Harry JR; James CR; Dufek JS
    Hum Mov Sci; 2019 Feb; 63():156-163. PubMed ID: 30553141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relation between peak knee flexion angle and knee ankle kinetics in single-leg jump landing from running: a pilot study on male handball players to prevent ACL injury.
    Ameer MA; Muaidi QI
    Phys Sportsmed; 2017 Sep; 45(3):337-343. PubMed ID: 28628348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peak Lower Extremity Landing Kinematics in Dancers and Nondancers.
    Hansberger BL; Acocello S; Slater LV; Hart JM; Ambegaonkar JP
    J Athl Train; 2018 Apr; 53(4):379-385. PubMed ID: 29528687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contributions of lower extremity joints to energy dissipation during landings.
    Zhang SN; Bates BT; Dufek JS
    Med Sci Sports Exerc; 2000 Apr; 32(4):812-9. PubMed ID: 10776901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ankle dorsiflexion range of motion is associated with kinematic but not kinetic variables related to bilateral drop-landing performance at various drop heights.
    Howe LP; Bampouras TM; North J; Waldron M
    Hum Mov Sci; 2019 Apr; 64():320-328. PubMed ID: 30836206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computation of the kinematics and the minimum peak joint moments of sit-to-stand movements.
    Yoshioka S; Nagano A; Himeno R; Fukashiro S
    Biomed Eng Online; 2007 Jul; 6():26. PubMed ID: 17608922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimum Drop Jump Height in Division III Athletes: Under 75% of Vertical Jump Height.
    Peng HT; Khuat CT; Kernozek TW; Wallace BJ; Lo SL; Song CY
    Int J Sports Med; 2017 Oct; 38(11):842-846. PubMed ID: 28895621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bilateral Comparison of Vertical Jump Landings and Step-off Landings From Equal Heights.
    Harry JR; Freedman Silvernail J; Mercer JA; Dufek JS
    J Strength Cond Res; 2018 Jul; 32(7):1937-1947. PubMed ID: 29939947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of pre-contact joint kinematics and vertical impulse between vertical jump landings and step-off landings from equal heights.
    Harry JR; Freedman Silvernail J; Mercer JA; Dufek JS
    Hum Mov Sci; 2017 Dec; 56(Pt B):88-97. PubMed ID: 29107821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gender differences in frontal and sagittal plane biomechanics during drop landings.
    Kernozek TW; Torry MR; VAN Hoof H; Cowley H; Tanner S
    Med Sci Sports Exerc; 2005 Jun; 37(6):1003-12; discussion 1013. PubMed ID: 15947726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the sagittal ankle angle at initial contact on energy dissipation in the lower extremity joints during a single-leg landing.
    Lee J; Song Y; Shin CS
    Gait Posture; 2018 May; 62():99-104. PubMed ID: 29544157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic Compensations due to Chronic Ankle Instability during Landing and Jumping.
    Kim H; Son SJ; Seeley MK; Hopkins JT
    Med Sci Sports Exerc; 2018 Feb; 50(2):308-317. PubMed ID: 28991043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Volitional Spine Stabilization During a Drop Vertical Jump From Different Landing Heights: Implications for Anterior Cruciate Ligament Injury.
    Haddas R; Hooper T; James CR; Sizer PS
    J Athl Train; 2016 Dec; 51(12):1003-1012. PubMed ID: 27874298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic knee valgus alignment influences impact attenuation in the lower extremity during the deceleration phase of a single-leg landing.
    Tamura A; Akasaka K; Otsudo T; Shiozawa J; Toda Y; Yamada K
    PLoS One; 2017; 12(6):e0179810. PubMed ID: 28632776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Landing Kinematics and Kinetics at the Knee During Different Landing Tasks.
    Heebner NR; Rafferty DM; Wohleber MF; Simonson AJ; Lovalekar M; Reinert A; Sell TC
    J Athl Train; 2017 Dec; 52(12):1101-1108. PubMed ID: 29154692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of a subsequent jump on the knee abduction angle during the early landing phase.
    Ishida T; Koshino Y; Yamanaka M; Ueno R; Taniguchi S; Samukawa M; Saito H; Matsumoto H; Aoki Y; Tohyama H
    BMC Musculoskelet Disord; 2018 Oct; 19(1):379. PubMed ID: 30342498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Timing of lower extremity frontal plane motion differs between female and male athletes during a landing task.
    Joseph MF; Rahl M; Sheehan J; MacDougall B; Horn E; Denegar CR; Trojian TH; Anderson JM; Kraemer WJ
    Am J Sports Med; 2011 Jul; 39(7):1517-21. PubMed ID: 21383083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.