These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 11079524)

  • 1. Which factors determine the optimal pedaling rate in sprint cycling?
    van Soest AJ; Casius LJ
    Med Sci Sports Exerc; 2000 Nov; 32(11):1927-34. PubMed ID: 11079524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of vasti morphology on peak sprint cycling power of a human musculoskeletal simulation model.
    Bobbert MF; Casius LJR; van der Zwaard S; Jaspers RT
    J Appl Physiol (1985); 2020 Feb; 128(2):445-455. PubMed ID: 31854247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Limiting radial pedal forces greatly reduces maximal power output and efficiency in sprint cycling: an optimal control study.
    Kistemaker DA; Terwiel RM; Reuvers EDHM; Bobbert MF
    J Appl Physiol (1985); 2023 Apr; 134(4):980-991. PubMed ID: 36825648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Relationship between Pedal Force and Crank Angular Velocity in Sprint Cycling.
    Bobbert MF; Casius LJ; Van Soest AJ
    Med Sci Sports Exerc; 2016 May; 48(5):869-78. PubMed ID: 26694841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The association between negative muscle work and pedaling rate.
    Neptune RR; Herzog W
    J Biomech; 1999 Oct; 32(10):1021-6. PubMed ID: 10476840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A theoretical analysis of an optimal chainring shape to maximize crank power during isokinetic pedaling.
    Rankin JW; Neptune RR
    J Biomech; 2008; 41(7):1494-502. PubMed ID: 18395213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force-velocity relationship in cycling revisited: benefit of two-dimensional pedal forces analysis.
    Dorel S; Couturier A; Lacour JR; Vandewalle H; Hautier C; Hug F
    Med Sci Sports Exerc; 2010 Jun; 42(6):1174-83. PubMed ID: 19997017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A theoretical analysis of preferred pedaling rate selection in endurance cycling.
    Neptune RR; Hull ML
    J Biomech; 1999 Apr; 32(4):409-15. PubMed ID: 10213031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determinants of metabolic cost during submaximal cycling.
    McDaniel J; Durstine JL; Hand GA; Martin JC
    J Appl Physiol (1985); 2002 Sep; 93(3):823-8. PubMed ID: 12183473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Why does power output decrease at high pedaling rates during sprint cycling?
    Samozino P; Horvais N; Hintzy F
    Med Sci Sports Exerc; 2007 Apr; 39(4):680-7. PubMed ID: 17414806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of pedaling rate on muscle mechanical energy in low power recumbent pedaling using forward dynamic simulations.
    Hakansson NA; Hull ML
    IEEE Trans Neural Syst Rehabil Eng; 2007 Dec; 15(4):509-16. PubMed ID: 18198708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of crank length on joint-specific power during maximal cycling.
    Barratt PR; Korff T; Elmer SJ; Martin JC
    Med Sci Sports Exerc; 2011 Sep; 43(9):1689-97. PubMed ID: 21311357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determinants of maximal cycling power: crank length, pedaling rate and pedal speed.
    Martin JC; Spirduso WW
    Eur J Appl Physiol; 2001 May; 84(5):413-8. PubMed ID: 11417428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Joint-specific power-pedaling rate relationships during maximal cycling.
    McDaniel J; Behjani NS; Elmer SJ; Brown NA; Martin JC
    J Appl Biomech; 2014 Jun; 30(3):423-30. PubMed ID: 24610335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Velocity-specific fatigue: quantifying fatigue during variable velocity cycling.
    Gardner AS; Martin DT; Jenkins DG; Dyer I; Van Eiden J; Barras M; Martin JC
    Med Sci Sports Exerc; 2009 Apr; 41(4):904-11. PubMed ID: 19276842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of pedaling rate on bilateral asymmetry in cycling.
    Smak W; Neptune RR; Hull ML
    J Biomech; 1999 Sep; 32(9):899-906. PubMed ID: 10460126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noncircular Chainrings Do Not Influence Maximum Cycling Power.
    Leong CH; Elmer SJ; Martin JC
    J Appl Biomech; 2017 Dec; 33(6):410-418. PubMed ID: 28605248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maximal torque- and power-pedaling rate relationships for elite sprint cyclists in laboratory and field tests.
    Gardner AS; Martin JC; Martin DT; Barras M; Jenkins DG
    Eur J Appl Physiol; 2007 Oct; 101(3):287-92. PubMed ID: 17562069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle coordination limits efficiency and power output of human limb movement under a wide range of mechanical demands.
    Blake OM; Wakeling JM
    J Neurophysiol; 2015 Dec; 114(6):3283-95. PubMed ID: 26445873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Pedal Speed and Crank Length on Pedaling Mechanics during Submaximal Cycling.
    Barratt PR; Martin JC; Elmer SJ; Korff T
    Med Sci Sports Exerc; 2016 Apr; 48(4):705-13. PubMed ID: 26559455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.