BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 11079854)

  • 1. A Bayesian network for mammography.
    Burnside E; Rubin D; Shachter R
    Proc AMIA Symp; 2000; ():106-10. PubMed ID: 11079854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A probabilistic expert system that provides automated mammographic-histologic correlation: initial experience.
    Burnside ES; Rubin DL; Shachter RD; Sohlich RE; Sickles EA
    AJR Am J Roentgenol; 2004 Feb; 182(2):481-8. PubMed ID: 14736686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breast imaging reporting and data system standardized mammography lexicon: observer variability in lesion description.
    Baker JA; Kornguth PJ; Floyd CE
    AJR Am J Roentgenol; 1996 Apr; 166(4):773-8. PubMed ID: 8610547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the interplay of machine learning and background knowledge in image interpretation by Bayesian networks.
    Velikova M; Lucas PJ; Samulski M; Karssemeijer N
    Artif Intell Med; 2013 Jan; 57(1):73-86. PubMed ID: 23395008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. External validation of a publicly available computer assisted diagnostic tool for mammographic mass lesions with two high prevalence research datasets.
    Benndorf M; Burnside ES; Herda C; Langer M; Kotter E
    Med Phys; 2015 Aug; 42(8):4987-96. PubMed ID: 26233224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of an online, publicly accessible naive Bayesian decision support tool for mammographic mass lesions based on the American College of Radiology (ACR) BI-RADS lexicon.
    Benndorf M; Kotter E; Langer M; Herda C; Wu Y; Burnside ES
    Eur Radiol; 2015 Jun; 25(6):1768-75. PubMed ID: 25576230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using a Bayesian network to predict the probability and type of breast cancer represented by microcalcifications on mammography.
    Burnside ES; Rubin DL; Shachter RD
    Stud Health Technol Inform; 2004; 107(Pt 1):13-7. PubMed ID: 15360765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preliminary investigation of a Bayesian network for mammographic diagnosis of breast cancer.
    Kahn CE; Roberts LM; Wang K; Jenks D; Haddawy P
    Proc Annu Symp Comput Appl Med Care; 1995; ():208-12. PubMed ID: 8563269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probabilistic computer model developed from clinical data in national mammography database format to classify mammographic findings.
    Burnside ES; Davis J; Chhatwal J; Alagoz O; Lindstrom MJ; Geller BM; Littenberg B; Shaffer KA; Kahn CE; Page CD
    Radiology; 2009 Jun; 251(3):663-72. PubMed ID: 19366902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breast imaging reporting and data system (BI-RADS).
    Liberman L; Menell JH
    Radiol Clin North Am; 2002 May; 40(3):409-30, v. PubMed ID: 12117184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance assessment for radiologists interpreting screening mammography.
    Woodard DB; Gelfand AE; Barlow WE; Elmore JG
    Stat Med; 2007 Mar; 26(7):1532-51. PubMed ID: 16847870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Case-based reasoning computer algorithm that uses mammographic findings for breast biopsy decisions.
    Floyd CE; Lo JY; Tourassi GD
    AJR Am J Roentgenol; 2000 Nov; 175(5):1347-52. PubMed ID: 11044039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Objectivity and accuracy of mammogram interpretation using the BI-RADS final assessment categories in 40- to 49-year-old women.
    McKay C; Hart CL; Erbacher G
    J Am Osteopath Assoc; 2000 Oct; 100(10):615-20. PubMed ID: 11105450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Probabilistic Model to Support Radiologists' Classification Decisions in Mammography Practice.
    Zeng J; Gimenez F; Burnside ES; Rubin DL; Shachter R
    Med Decis Making; 2019 Apr; 39(3):208-216. PubMed ID: 30819048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mammographic screening and reporting: a need for standardisation. A review.
    Akhigbe AO; Igbinedion BO
    Niger Postgrad Med J; 2013 Dec; 20(4):346-51. PubMed ID: 24633281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncertainty modeling for ontology-based mammography annotation with intelligent BI-RADS scoring.
    Bulu H; Alpkocak A; Balci P
    Comput Biol Med; 2013 May; 43(4):301-11. PubMed ID: 23414780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer vision and artificial intelligence in mammography.
    Vyborny CJ; Giger ML
    AJR Am J Roentgenol; 1994 Mar; 162(3):699-708. PubMed ID: 8109525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computerized calculation of breast density: our experience from Arcadia Medical Imaging Center.
    Jari I; Ursaru M; Gheorghe L; Naum AG; Negru D
    Rev Med Chir Soc Med Nat Iasi; 2014; 118(4):979-85. PubMed ID: 25581957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expert learning system network for diagnosis of breast calcifications.
    Patrick EA; Moskowitz M; Mansukhani VT; Gruenstein EI
    Invest Radiol; 1991 Jun; 26(6):534-9. PubMed ID: 1860760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applications and literature review of the BI-RADS classification.
    Obenauer S; Hermann KP; Grabbe E
    Eur Radiol; 2005 May; 15(5):1027-36. PubMed ID: 15856253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.