These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 1108002)

  • 21. Alteration of DNA reassociation kinetics due to base mismatch caused by thymine dimerisation.
    Weinblum D; Breter HJ; Zahn RK; Berger J
    Biochim Biophys Acta; 1974 Dec; 374(3):324-31. PubMed ID: 4611496
    [No Abstract]   [Full Text] [Related]  

  • 22. Initiation of general recombination catalyzed in vitro by the recA protein of Escherichia coli.
    McEntee K; Weinstock GM; Lehman IR
    Proc Natl Acad Sci U S A; 1979 Jun; 76(6):2615-9. PubMed ID: 379861
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Palindromic, repeating and unique sequences in the macronuclear DNA of Tetrahymena pyriformis GL infusoria].
    Borusenius SN; Belozerskaia NA; Merkulova NA; Vorob'ev VI
    Mol Biol (Mosk); 1978; 12(3):676-88. PubMed ID: 661827
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Beta protein of bacteriophage lambda promotes renaturation of DNA.
    Kmiec E; Holloman WK
    J Biol Chem; 1981 Dec; 256(24):12636-9. PubMed ID: 6273399
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Renaturation of bacteriophage lambda DNA. Determination of the optimal renaturation conditions using a single-strand-specific DNase and alkaline-sucrose-gradient assay system.
    Fanning TG; Schreier PH; Davies RW
    Eur J Biochem; 1976 Feb; 62(1):173-9. PubMed ID: 1248479
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DNA sequence organization in the genomes of five marine invertebrates.
    Goldberg RB; Crain WR; Ruderman JV; Moore GP; Barnett TR; Higgins RC; Gelfand RA; Galau GA; Britten RJ; Davidson EH
    Chromosoma; 1975 Jul; 51(3):225-51. PubMed ID: 238802
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The contribution of DNA single-stranded order to the thermodynamics of duplex formation.
    Vesnaver G; Breslauer KJ
    Proc Natl Acad Sci U S A; 1991 May; 88(9):3569-73. PubMed ID: 2023903
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The adenovirus DNA binding protein enhances intermolecular DNA renaturation but inhibits intramolecular DNA renaturation.
    Zijderveld DC; Stuiver MH; van der Vliet PC
    Nucleic Acids Res; 1993 Jun; 21(11):2591-8. PubMed ID: 8332457
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of S1 nuclease and formamide in combination for the reassociation studies on GC-rich DNA.
    Sadhu C; Datta S; Gopinathan KP
    Anal Biochem; 1984 Oct; 142(1):53-7. PubMed ID: 6097143
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The renaturation of denatured DNA.
    CAVALIERI LF; SMALL T; SARKAR N
    Biophys J; 1962 Jul; 2(4):339-50. PubMed ID: 13877444
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetic mechanism of the single-stranded DNA recognition by Escherichia coli replicative helicase DnaB protein. Application of the matrix projection operator technique to analyze stopped-flow kinetics.
    Bujalowski W; Jezewska MJ
    J Mol Biol; 2000 Jan; 295(4):831-52. PubMed ID: 10656794
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The beta protein of phage lambda binds preferentially to an intermediate in DNA renaturation.
    Karakousis G; Ye N; Li Z; Chiu SK; Reddy G; Radding CM
    J Mol Biol; 1998 Mar; 276(4):721-31. PubMed ID: 9500924
    [TBL] [Abstract][Full Text] [Related]  

  • 33. p53 binds single-stranded DNA ends and catalyzes DNA renaturation and strand transfer.
    Bakalkin G; Yakovleva T; Selivanova G; Magnusson KP; Szekely L; Kiseleva E; Klein G; Terenius L; Wiman KG
    Proc Natl Acad Sci U S A; 1994 Jan; 91(1):413-7. PubMed ID: 8278402
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification and purification of a single-stranded-DNA-specific exonuclease encoded by the recJ gene of Escherichia coli.
    Lovett ST; Kolodner RD
    Proc Natl Acad Sci U S A; 1989 Apr; 86(8):2627-31. PubMed ID: 2649886
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reduced-stringency DNA reassociation: sequence specific duplex formation.
    Burr HE; Schimke RT
    Nucleic Acids Res; 1982 Jan; 10(2):719-33. PubMed ID: 6278429
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mitochondrial DNA of Tetrahymena pyriformis strain ST contains a long terminal duplication-inversion.
    Arnberg AC; Van Bruggen EF; Brost P; Clegg RA; Schutgens RB; Weijers PJ; Goldbach RW
    Biochim Biophys Acta; 1975 Apr; 383(4):359-69. PubMed ID: 804923
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alkaline lysis of mammalian cells for sedimentation analysis of nuclear DNA. Conformation of released DNA as monitored by physical, electron microscopic and enzymological techniques.
    Parodi S; Mulivor RA; Martin JT; Nicolini C; Sarma DS; Farber E
    Biochim Biophys Acta; 1975 Oct; 407(2):174-90. PubMed ID: 241420
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DNA sequence organization in the common Pacific starfish Pisaster ochraceous.
    Smith MJ; Boal R
    Can J Biochem; 1978 Nov; 56(11):1048-54. PubMed ID: 737568
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reassociation rate limited displacement of DNA strands by branch migration.
    Green C; Tibbetts C
    Nucleic Acids Res; 1981 Apr; 9(8):1905-18. PubMed ID: 6264399
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Homologous pairing of single-stranded circular DNAs catalyzed by recA protein.
    Keener SL; McEntee K
    Nucleic Acids Res; 1984 Aug; 12(15):6127-39. PubMed ID: 6382164
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.