These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 11080155)

  • 1. Nuclear-specific degradation of Far1 is controlled by the localization of the F-box protein Cdc4.
    Blondel M; Galan JM; Chi Y; Lafourcade C; Longaretti C; Deshaies RJ; Peter M
    EMBO J; 2000 Nov; 19(22):6085-97. PubMed ID: 11080155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorylation- and ubiquitin-dependent degradation of the cyclin-dependent kinase inhibitor Far1p in budding yeast.
    Henchoz S; Chi Y; Catarin B; Herskowitz I; Deshaies RJ; Peter M
    Genes Dev; 1997 Nov; 11(22):3046-60. PubMed ID: 9367986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transferable domain in the G(1) cyclin Cln2 sufficient to switch degradation of Sic1 from the E3 ubiquitin ligase SCF(Cdc4) to SCF(Grr1).
    Berset C; Griac P; Tempel R; La Rue J; Wittenberg C; Lanker S
    Mol Cell Biol; 2002 Jul; 22(13):4463-76. PubMed ID: 12052857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear sequestration of the exchange factor Cdc24 by Far1 regulates cell polarity during yeast mating.
    Shimada Y; Gulli MP; Peter M
    Nat Cell Biol; 2000 Feb; 2(2):117-24. PubMed ID: 10655592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and characterization of HRT1 using a genetic screen for mutants unable to degrade Gic2p in saccharomyces cerevisiae.
    Blondel M; Galan JM; Peter M
    Genetics; 2000 Jul; 155(3):1033-44. PubMed ID: 10880467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct inhibition of the yeast cyclin-dependent kinase Cdc28-Cln by Far1.
    Peter M; Herskowitz I
    Science; 1994 Aug; 265(5176):1228-31. PubMed ID: 8066461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ubiquitination and degradation of the substrate recognition subunits of SCF ubiquitin-protein ligases.
    Zhou P; Howley PM
    Mol Cell; 1998 Nov; 2(5):571-80. PubMed ID: 9844630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cdc53 is a scaffold protein for multiple Cdc34/Skp1/F-box proteincomplexes that regulate cell division and methionine biosynthesis in yeast.
    Patton EE; Willems AR; Sa D; Kuras L; Thomas D; Craig KL; Tyers M
    Genes Dev; 1998 Mar; 12(5):692-705. PubMed ID: 9499404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A refined two-hybrid system reveals that SCF(Cdc4)-dependent degradation of Swi5 contributes to the regulatory mechanism of S-phase entry.
    Kishi T; Ikeda A; Koyama N; Fukada J; Nagao R
    Proc Natl Acad Sci U S A; 2008 Sep; 105(38):14497-502. PubMed ID: 18787112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SCF ubiquitin protein ligases and phosphorylation-dependent proteolysis.
    Willems AR; Goh T; Taylor L; Chernushevich I; Shevchenko A; Tyers M
    Philos Trans R Soc Lond B Biol Sci; 1999 Sep; 354(1389):1533-50. PubMed ID: 10582239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SIC1 is ubiquitinated in vitro by a pathway that requires CDC4, CDC34, and cyclin/CDK activities.
    Verma R; Feldman RM; Deshaies RJ
    Mol Biol Cell; 1997 Aug; 8(8):1427-37. PubMed ID: 9285816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclear export of Far1p in response to pheromones requires the export receptor Msn5p/Ste21p.
    Blondel M; Alepuz PM; Huang LS; Shaham S; Ammerer G; Peter M
    Genes Dev; 1999 Sep; 13(17):2284-300. PubMed ID: 10485850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cic1, an adaptor protein specifically linking the 26S proteasome to its substrate, the SCF component Cdc4.
    Jäger S; Strayle J; Heinemeyer W; Wolf DH
    EMBO J; 2001 Aug; 20(16):4423-31. PubMed ID: 11500370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex.
    Skowyra D; Craig KL; Tyers M; Elledge SJ; Harper JW
    Cell; 1997 Oct; 91(2):209-19. PubMed ID: 9346238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FAR1 links the signal transduction pathway to the cell cycle machinery in yeast.
    Peter M; Gartner A; Horecka J; Ammerer G; Herskowitz I
    Cell; 1993 May; 73(4):747-60. PubMed ID: 8500168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SCFCdc4 enables mating type switching in yeast by cyclin-dependent kinase-mediated elimination of the Ash1 transcriptional repressor.
    Liu Q; Larsen B; Ricicova M; Orlicky S; Tekotte H; Tang X; Craig K; Quiring A; Le Bihan T; Hansen C; Sicheri F; Tyers M
    Mol Cell Biol; 2011 Feb; 31(3):584-98. PubMed ID: 21098119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct subcellular localization patterns contribute to functional specificity of the Cln2 and Cln3 cyclins of Saccharomyces cerevisiae.
    Miller ME; Cross FR
    Mol Cell Biol; 2000 Jan; 20(2):542-55. PubMed ID: 10611233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. F-box protein specificity for g1 cyclins is dictated by subcellular localization.
    Landry BD; Doyle JP; Toczyski DP; Benanti JA
    PLoS Genet; 2012; 8(7):e1002851. PubMed ID: 22844257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pheromone-dependent G1 cell cycle arrest requires Far1 phosphorylation, but may not involve inhibition of Cdc28-Cln2 kinase, in vivo.
    Gartner A; Jovanović A; Jeoung DI; Bourlat S; Cross FR; Ammerer G
    Mol Cell Biol; 1998 Jul; 18(7):3681-91. PubMed ID: 9632750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleus-specific and cell cycle-regulated degradation of mitogen-activated protein kinase scaffold protein Ste5 contributes to the control of signaling competence.
    Garrenton LS; Braunwarth A; Irniger S; Hurt E; Künzler M; Thorner J
    Mol Cell Biol; 2009 Jan; 29(2):582-601. PubMed ID: 19001089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.