BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 11080174)

  • 1. The transforming growth factor-betas: structure, signaling, and roles in nervous system development and functions.
    Böttner M; Krieglstein K; Unsicker K
    J Neurochem; 2000 Dec; 75(6):2227-40. PubMed ID: 11080174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TGF-betas and their roles in the regulation of neuron survival.
    Unsicker K; Krieglstein K
    Adv Exp Med Biol; 2002; 513():353-74. PubMed ID: 12575828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transforming growth factor betas and their signaling receptors in human hepatocellular carcinoma.
    Abou-Shady M; Baer HU; Friess H; Berberat P; Zimmermann A; Graber H; Gold LI; Korc M; Büchler MW
    Am J Surg; 1999 Mar; 177(3):209-15. PubMed ID: 10219856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TGF-beta and the regulation of neuron survival and death.
    Krieglstein K; Strelau J; Schober A; Sullivan A; Unsicker K
    J Physiol Paris; 2002; 96(1-2):25-30. PubMed ID: 11755780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emerging roles for TGF-beta1 in nervous system development.
    Gomes FC; Sousa Vde O; Romão L
    Int J Dev Neurosci; 2005 Aug; 23(5):413-24. PubMed ID: 15936920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TGF-{beta}1 activates two distinct type I receptors in neurons: implications for neuronal NF-{kappa}B signaling.
    König HG; Kögel D; Rami A; Prehn JH
    J Cell Biol; 2005 Mar; 168(7):1077-86. PubMed ID: 15781474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structures of TGF-β receptor complexes: implications for function and therapeutic intervention using ligand traps.
    Hinck AP; O'Connor-McCourt MD
    Curr Pharm Biotechnol; 2011 Dec; 12(12):2081-98. PubMed ID: 21619540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soluble type II transforming growth factor-beta (TGF-beta) receptor inhibits TGF-beta signaling in COLO-357 pancreatic cancer cells in vitro and attenuates tumor formation.
    Rowland-Goldsmith MA; Maruyama H; Kusama T; Ralli S; Korc M
    Clin Cancer Res; 2001 Sep; 7(9):2931-40. PubMed ID: 11555612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functions of transforming growth factor-beta isoforms in the nervous system. Cues based on localization and experimental in vitro and in vivo evidence.
    Unsicker K; Strelau J
    Eur J Biochem; 2000 Dec; 267(24):6972-5. PubMed ID: 11106405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transforming growth factor-beta: a general review.
    Lawrence DA
    Eur Cytokine Netw; 1996 Sep; 7(3):363-74. PubMed ID: 8954178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The transforming growth factor-betas: multifaceted regulators of the development and maintenance of skeletal muscles, motoneurons and Schwann cells.
    McLennan IS; Koishi K
    Int J Dev Biol; 2002; 46(4):559-67. PubMed ID: 12141444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of TGF-betas in the embryonic nervous system: analysis of interbalance between isoforms.
    Mecha M; Rabadán MA; Peña-Melián A; Valencia M; Mondéjar T; Blanco MJ
    Dev Dyn; 2008 Jun; 237(6):1709-17. PubMed ID: 18498095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activin and TGF-β effects on brain development and neural stem cells.
    Rodríguez-Martínez G; Velasco I
    CNS Neurol Disord Drug Targets; 2012 Nov; 11(7):844-55. PubMed ID: 23131163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TGF-beta regulates the survival of ciliary ganglionic neurons synergistically with ciliary neurotrophic factor and neurotrophins.
    Krieglstein K; Farkas L; Unsicker K
    J Neurobiol; 1998 Dec; 37(4):563-72. PubMed ID: 9858258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of transforming growth factor betas and their signaling receptors in stone-containing intrahepatic bile ducts and cholangiocarcinoma.
    Lee KT; Liu TS
    World J Surg; 2003 Oct; 27(10):1143-8. PubMed ID: 12917766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of TGF-beta1, TGF-beta2, TGF-beta3 and the receptors TGF-betaRI and TGF-betaRII in placentomes of artificially inseminated and nuclear transfer derived bovine pregnancies.
    Ravelich SR; Shelling AN; Wells DN; Peterson AJ; Lee RS; Ramachandran A; Keelan JA
    Placenta; 2006; 27(2-3):307-16. PubMed ID: 15955560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of transforming growth factor (TGF)-beta1, -beta2, and -beta3 isoforms and TGF-beta type I and type II receptors in multiple sclerosis lesions and human adult astrocyte cultures.
    De Groot CJ; Montagne L; Barten AD; Sminia P; Van Der Valk P
    J Neuropathol Exp Neurol; 1999 Feb; 58(2):174-87. PubMed ID: 10029100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of TGF-beta and its receptors in murine fetal and adult dermal wounds.
    Cowin AJ; Holmes TM; Brosnan P; Ferguson MW
    Eur J Dermatol; 2001; 11(5):424-31. PubMed ID: 11525949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular distribution of transforming growth factor betas 1, 2, and 3 and their types I and II receptors during postnatal development and spermatogenesis in the boar testis.
    Caussanel V; Tabone E; Hendrick JC; Dacheux F; Benahmed M
    Biol Reprod; 1997 Feb; 56(2):357-67. PubMed ID: 9116134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transforming growth factor-betas in neurodegenerative disease.
    Flanders KC; Ren RF; Lippa CF
    Prog Neurobiol; 1998 Jan; 54(1):71-85. PubMed ID: 9460794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.