These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 11080292)
1. Hydroxylated phytosiderophore species possess an enhanced chelate stability and affinity for iron(III). von Wirén N; Khodr H; Hider RC Plant Physiol; 2000 Nov; 124(3):1149-58. PubMed ID: 11080292 [TBL] [Abstract][Full Text] [Related]
2. The Phytosiderophore Efflux Transporter TOM2 Is Involved in Metal Transport in Rice. Nozoye T; Nagasaka S; Kobayashi T; Sato Y; Uozumi N; Nakanishi H; Nishizawa NK J Biol Chem; 2015 Nov; 290(46):27688-99. PubMed ID: 26432636 [TBL] [Abstract][Full Text] [Related]
3. Phytosiderophores revisited: 2'-deoxymugineic acid-mediated iron uptake triggers nitrogen assimilation in rice (Oryza sativa L.) seedlings. Araki R; Namba K; Murata Y; Murata J Plant Signal Behav; 2015; 10(6):e1031940. PubMed ID: 26023724 [TBL] [Abstract][Full Text] [Related]
4. Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. Nozoye T; Nagasaka S; Kobayashi T; Takahashi M; Sato Y; Sato Y; Uozumi N; Nakanishi H; Nishizawa NK J Biol Chem; 2011 Feb; 286(7):5446-54. PubMed ID: 21156806 [TBL] [Abstract][Full Text] [Related]
5. Investigation of ascorbate-mediated iron release from ferric phytosiderophores in the presence of nicotianamine. Weber G; von Wirén N; Hayen H Biometals; 2008 Oct; 21(5):503-13. PubMed ID: 18322653 [TBL] [Abstract][Full Text] [Related]
6. Root exudation of phytosiderophores from soil-grown wheat. Oburger E; Gruber B; Schindlegger Y; Schenkeveld WDC; Hann S; Kraemer SM; Wenzel WW; Puschenreiter M New Phytol; 2014 Sep; 203(4):1161-1174. PubMed ID: 24890330 [TBL] [Abstract][Full Text] [Related]
7. A practical synthesis of the phytosiderophore 2'-deoxymugineic acid: a key to the mechanistic study of iron acquisition by graminaceous plants. Namba K; Murata Y; Horikawa M; Iwashita T; Kusumoto S Angew Chem Int Ed Engl; 2007; 46(37):7060-3. PubMed ID: 17691091 [No Abstract] [Full Text] [Related]
8. In vitro characterization of iron-phytosiderophore interaction with maize root plasma membranes: evidences for slow association kinetics. von Wirén N; Gibrat R; Briat JF Biochim Biophys Acta; 1998 Apr; 1371(1):143-55. PubMed ID: 9565671 [TBL] [Abstract][Full Text] [Related]
9. ZmYS1 functions as a proton-coupled symporter for phytosiderophore- and nicotianamine-chelated metals. Schaaf G; Ludewig U; Erenoglu BE; Mori S; Kitahara T; von Wirén N J Biol Chem; 2004 Mar; 279(10):9091-6. PubMed ID: 14699112 [TBL] [Abstract][Full Text] [Related]
10. A specific transporter for iron(III)-phytosiderophore in barley roots. Murata Y; Ma JF; Yamaji N; Ueno D; Nomoto K; Iwashita T Plant J; 2006 May; 46(4):563-72. PubMed ID: 16640594 [TBL] [Abstract][Full Text] [Related]
11. Organic Chemistry Research on the Mechanistic Elucidation of Iron Acquisition in Barley. Namba K; Murata Y Biol Pharm Bull; 2018; 41(10):1502-1507. PubMed ID: 30270318 [TBL] [Abstract][Full Text] [Related]
12. Transgenic petunia with the iron(III)-phytosiderophore transporter gene acquires tolerance to iron deficiency in alkaline environments. Murata Y; Itoh Y; Iwashita T; Namba K PLoS One; 2015; 10(3):e0120227. PubMed ID: 25781941 [TBL] [Abstract][Full Text] [Related]
13. Development of a mugineic acid family phytosiderophore analog as an iron fertilizer. Suzuki M; Urabe A; Sasaki S; Tsugawa R; Nishio S; Mukaiyama H; Murata Y; Masuda H; Aung MS; Mera A; Takeuchi M; Fukushima K; Kanaki M; Kobayashi K; Chiba Y; Shrestha BB; Nakanishi H; Watanabe T; Nakayama A; Fujino H; Kobayashi T; Tanino K; Nishizawa NK; Namba K Nat Commun; 2021 Mar; 12(1):1558. PubMed ID: 33692352 [TBL] [Abstract][Full Text] [Related]
14. Anion exchange liquid chromatography--inductively coupled plasma-mass spectrometry detection of the Co2+, Cu2+, Fe3+ and Ni2+ complexes of mugineic and deoxymugineic acid. Bakkaus E; Collins RN; Morel JL; Gouget B J Chromatogr A; 2006 Oct; 1129(2):208-15. PubMed ID: 16876808 [TBL] [Abstract][Full Text] [Related]
15. OsYSL18 is a rice iron(III)-deoxymugineic acid transporter specifically expressed in reproductive organs and phloem of lamina joints. Aoyama T; Kobayashi T; Takahashi M; Nagasaka S; Usuda K; Kakei Y; Ishimaru Y; Nakanishi H; Mori S; Nishizawa NK Plant Mol Biol; 2009 Aug; 70(6):681-92. PubMed ID: 19468840 [TBL] [Abstract][Full Text] [Related]
16. The binding of aluminum to mugineic acid and related compounds as studied by potentiometric titration. Yoshimura E; Kohdr H; Mori S; Hider RC Biometals; 2011 Aug; 24(4):723-7. PubMed ID: 21350950 [TBL] [Abstract][Full Text] [Related]
17. [Study on the structure activity relationship of a phytosiderophore, mugineic acid]. Nishimaru T Yakugaku Zasshi; 2006 Jul; 126(7):473-9. PubMed ID: 16819268 [TBL] [Abstract][Full Text] [Related]
18. Indirect utilization of the phytosiderophore mugineic acid as an iron source to rhizosphere fluorescent Pseudomonas. Jurkevitch E; Hadar Y; Chen Y; Chino M; Mori S Biometals; 1993; 6(2):119-23. PubMed ID: 8358206 [TBL] [Abstract][Full Text] [Related]
19. CE of phytosiderophores and related metal species in plants. Xuan Y; Scheuermann EB; Meda AR; Jacob P; von Wirén N; Weber G Electrophoresis; 2007 Oct; 28(19):3507-19. PubMed ID: 17768721 [TBL] [Abstract][Full Text] [Related]
20. Investigation of Nicotianamine and 2' Deoxymugineic Acid as Enhancers of Iron Bioavailability in Caco-2 Cells. Beasley JT; Hart JJ; Tako E; Glahn RP; Johnson AAT Nutrients; 2019 Jun; 11(7):. PubMed ID: 31262064 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]