These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 110804)

  • 1. Phosphate transport in rat liver mitochondria. Properties of a Ca2+-activated uptake process in inverted inner membrane vesicles.
    Wehrle JP; Pedersen PL
    J Biol Chem; 1979 Aug; 254(15):7269-75. PubMed ID: 110804
    [No Abstract]   [Full Text] [Related]  

  • 2. Uptake of spermine by rat liver mitochondria and its influence on the transport of phosphate.
    Toninello A; Di Lisa F; Siliprandi D; Siliprandi N
    Biochim Biophys Acta; 1985 May; 815(3):399-404. PubMed ID: 3922414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disequilibrium between steady-state Ca2+ accumulation ratio and membrane potential in mitochondria. Pathway and role of Ca2+ efflux.
    Pozzan T; Bragadin M; Azzone GF
    Biochemistry; 1977 Dec; 16(25):5618-25. PubMed ID: 21688
    [No Abstract]   [Full Text] [Related]  

  • 4. Cycles in the function of mitochondrial membrane transport systems.
    Lehninger AL; Reynafarje B
    Curr Top Cell Regul; 1981; 18():329-41. PubMed ID: 7273845
    [No Abstract]   [Full Text] [Related]  

  • 5. Characteristics of the active transport of Ca2+ by submitochondrial vesicles.
    Niggli V; Mattenberger M; Gazzotti P
    Eur J Biochem; 1978 Sep; 89(2):361-6. PubMed ID: 710397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphate transport in rat liver mitochondria: location of sulfhydryl groups essential for transport activities.
    Wehrle JP; Pedersen PL
    J Bioenerg Biomembr; 1981 Dec; 13(5-6):285-94. PubMed ID: 7334021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Opening of the mitochondrial permeability transition pore by uncoupling or inorganic phosphate in the presence of Ca2+ is dependent on mitochondrial-generated reactive oxygen species.
    Kowaltowski AJ; Castilho RF; Vercesi AE
    FEBS Lett; 1996 Jan; 378(2):150-2. PubMed ID: 8549822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of Ca2+ transport by Trypanosoma cruzi mitochondria in situ.
    Docampo R; Vercesi AE
    Arch Biochem Biophys; 1989 Jul; 272(1):122-9. PubMed ID: 2500059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies of mitochondrial calcium movements using chlorotetracycline.
    Luthra R; Olson MS
    Biochim Biophys Acta; 1976 Sep; 440(3):744-58. PubMed ID: 822874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of phosphate transport in mitochondria and in inverted inner membrane vesicles of rat liver.
    Coty WA; Wehrle JP; Pedersen PL
    Methods Enzymol; 1979; 56():353-9. PubMed ID: 459871
    [No Abstract]   [Full Text] [Related]  

  • 11. The role of glutamate transport in the regulation of the pathway of proline oxidation in rat liver mitochondria.
    Hoek JB; Njogu RM
    J Biol Chem; 1980 Sep; 255(18):8711-8. PubMed ID: 7410389
    [No Abstract]   [Full Text] [Related]  

  • 12. Phosphate transport in rat liver mitochondria. Energy-dependent accumulation of phosphate by inverted inner membrane vesicles.
    Wehrle JP; Cintrón NM; Pedersen PL
    J Biol Chem; 1978 Dec; 253(23):8598-603. PubMed ID: 152316
    [No Abstract]   [Full Text] [Related]  

  • 13. The effects of thyroxine treatment, in vivo and in vitro, on Ca2+ efflux from rat liver mitochondria.
    Shears SB; Bronk JR
    FEBS Lett; 1981 Apr; 126(1):9-12. PubMed ID: 6165615
    [No Abstract]   [Full Text] [Related]  

  • 14. Spermine inhibition of the permeability transition of isolated rat liver mitochondria: an investigation of mechanism.
    Lapidus RG; Sokolove PM
    Arch Biochem Biophys; 1993 Oct; 306(1):246-53. PubMed ID: 8215411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slow Ca2+-induced inactive/active transition of the energy-dependent Ca2+ transporting system of rat liver mitochondria: clue for Ca2+ influx cooperativity.
    Kasparinsky FO; Vinogradov AD
    FEBS Lett; 1996 Jul; 389(3):293-6. PubMed ID: 8766719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore by the proton electrochemical gradient. Evidence that the pore can be opened by membrane depolarization.
    Bernardi P
    J Biol Chem; 1992 May; 267(13):8834-9. PubMed ID: 1374381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. delta pH induced calcium fluxes in rat liver mitochondria.
    Bernardi P; Azzone GF
    Eur J Biochem; 1979 Dec; 102(2):555-62. PubMed ID: 43251
    [No Abstract]   [Full Text] [Related]  

  • 18. Effect of ruthenium red on calcium efflux from rat liver mitochondria.
    Rigoni F; Mathien-Shire Y; Deana R
    FEBS Lett; 1980 Nov; 120(2):255-8. PubMed ID: 6160058
    [No Abstract]   [Full Text] [Related]  

  • 19. [Effect of tenoyltrifluoroacetone on the functioning of mitochondria and other membrane structures].
    Gagel'gans AI; Shkinevv AV; Zamaraeva MV; Krasil'nikov OV; Ternovskiĭ VI
    Biokhimiia; 1980 Dec; 45(12):2165-75. PubMed ID: 7248351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A possible mechanism for respiration-dependent efflux of Mg ions from liver mitochondria.
    Siliprandi D; Toninello A; Zoccarato F; Siliprandi N
    Biochem Biophys Res Commun; 1977 Sep; 78(1):23-7. PubMed ID: 410411
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.