These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
845 related articles for article (PubMed ID: 11081517)
1. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. McKinsey TA; Zhang CL; Lu J; Olson EN Nature; 2000 Nov; 408(6808):106-11. PubMed ID: 11081517 [TBL] [Abstract][Full Text] [Related]
2. Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5. McKinsey TA; Zhang CL; Olson EN Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14400-5. PubMed ID: 11114197 [TBL] [Abstract][Full Text] [Related]
3. Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation. Zhang CL; McKinsey TA; Olson EN Mol Cell Biol; 2002 Oct; 22(20):7302-12. PubMed ID: 12242305 [TBL] [Abstract][Full Text] [Related]
4. CaM kinase IIdeltaC phosphorylation of 14-3-3beta in vascular smooth muscle cells: activation of class II HDAC repression. Ellis JJ; Valencia TG; Zeng H; Roberts LD; Deaton RA; Grant SR Mol Cell Biochem; 2003 Jan; 242(1-2):153-61. PubMed ID: 12619878 [TBL] [Abstract][Full Text] [Related]
5. Identification of a signal-responsive nuclear export sequence in class II histone deacetylases. McKinsey TA; Zhang CL; Olson EN Mol Cell Biol; 2001 Sep; 21(18):6312-21. PubMed ID: 11509672 [TBL] [Abstract][Full Text] [Related]
6. The transcriptional corepressor MITR is a signal-responsive inhibitor of myogenesis. Zhang CL; McKinsey TA; Olson EN Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7354-9. PubMed ID: 11390982 [TBL] [Abstract][Full Text] [Related]
7. Neuronal activity-dependent nucleocytoplasmic shuttling of HDAC4 and HDAC5. Chawla S; Vanhoutte P; Arnold FJ; Huang CL; Bading H J Neurochem; 2003 Apr; 85(1):151-9. PubMed ID: 12641737 [TBL] [Abstract][Full Text] [Related]
8. Activity-dependent and -independent nuclear fluxes of HDAC4 mediated by different kinases in adult skeletal muscle. Liu Y; Randall WR; Schneider MF J Cell Biol; 2005 Mar; 168(6):887-97. PubMed ID: 15767461 [TBL] [Abstract][Full Text] [Related]
9. Mirk/dyrk1B decreases the nuclear accumulation of class II histone deacetylases during skeletal muscle differentiation. Deng X; Ewton DZ; Mercer SE; Friedman E J Biol Chem; 2005 Feb; 280(6):4894-905. PubMed ID: 15546868 [TBL] [Abstract][Full Text] [Related]
10. Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. Lu J; McKinsey TA; Zhang CL; Olson EN Mol Cell; 2000 Aug; 6(2):233-44. PubMed ID: 10983972 [TBL] [Abstract][Full Text] [Related]
12. Nuclear calcium/calmodulin-dependent protein kinase IIdelta preferentially transmits signals to histone deacetylase 4 in cardiac cells. Little GH; Bai Y; Williams T; Poizat C J Biol Chem; 2007 Mar; 282(10):7219-31. PubMed ID: 17179159 [TBL] [Abstract][Full Text] [Related]
13. A dynamic role for HDAC7 in MEF2-mediated muscle differentiation. Dressel U; Bailey PJ; Wang SC; Downes M; Evans RM; Muscat GE J Biol Chem; 2001 May; 276(20):17007-13. PubMed ID: 11279209 [TBL] [Abstract][Full Text] [Related]
14. Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Lu J; McKinsey TA; Nicol RL; Olson EN Proc Natl Acad Sci U S A; 2000 Apr; 97(8):4070-5. PubMed ID: 10737771 [TBL] [Abstract][Full Text] [Related]
15. Cyclin D-cdk4 activity modulates the subnuclear localization and interaction of MEF2 with SRC-family coactivators during skeletal muscle differentiation. Lazaro JB; Bailey PJ; Lassar AB Genes Dev; 2002 Jul; 16(14):1792-805. PubMed ID: 12130539 [TBL] [Abstract][Full Text] [Related]
16. Inactivation of the myocyte enhancer factor-2 repressor histone deacetylase-5 by endogenous Ca(2+) //calmodulin-dependent kinase II promotes depolarization-mediated cerebellar granule neuron survival. Linseman DA; Bartley CM; Le SS; Laessig TA; Bouchard RJ; Meintzer MK; Li M; Heidenreich KA J Biol Chem; 2003 Oct; 278(42):41472-81. PubMed ID: 12896970 [TBL] [Abstract][Full Text] [Related]
17. HDAC4 deacetylase associates with and represses the MEF2 transcription factor. Miska EA; Karlsson C; Langley E; Nielsen SJ; Pines J; Kouzarides T EMBO J; 1999 Sep; 18(18):5099-107. PubMed ID: 10487761 [TBL] [Abstract][Full Text] [Related]
18. Association with class IIa histone deacetylases upregulates the sumoylation of MEF2 transcription factors. Grégoire S; Yang XJ Mol Cell Biol; 2005 Mar; 25(6):2273-87. PubMed ID: 15743823 [TBL] [Abstract][Full Text] [Related]
19. Cyclic AMP represses pathological MEF2 activation by myocyte-specific hypo-phosphorylation of HDAC5. He T; Huang J; Chen L; Han G; Stanmore D; Krebs-Haupenthal J; Avkiran M; Hagenmüller M; Backs J J Mol Cell Cardiol; 2020 Aug; 145():88-98. PubMed ID: 32485181 [TBL] [Abstract][Full Text] [Related]
20. Regulation of HDAC9 gene expression by MEF2 establishes a negative-feedback loop in the transcriptional circuitry of muscle differentiation. Haberland M; Arnold MA; McAnally J; Phan D; Kim Y; Olson EN Mol Cell Biol; 2007 Jan; 27(2):518-25. PubMed ID: 17101791 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]