These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 110820)

  • 1. Dual capacity for nutrient uptake in Tetrahymena. V. Utilization of amino acids and proteins.
    Orias E; Rasmussen L
    J Cell Sci; 1979 Apr; 36():343-53. PubMed ID: 110820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual capacity for nutrient uptake in Tetrahymena. II. Role of the two systems in vitamin uptake.
    Orias E; Rasmussen
    J Protozool; 1977 Nov; 24(4):507-11. PubMed ID: 413910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relationship between energy-dependent phagocytosis and the rate of oxygen consumption in Tetrahymena.
    Skriver L; Nilsson JR
    J Gen Microbiol; 1978 Dec; 109(2):359-66. PubMed ID: 106089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual capacity for nutrient uptake in Tetrahymena. IV. Growth without food vacuoles and its implications.
    Orias E; Rasmussen L
    Exp Cell Res; 1976 Oct; 102(1):127-37. PubMed ID: 824146
    [No Abstract]   [Full Text] [Related]  

  • 5. Fine structure and RNA synthesis of Tetrahymena during cytochalasin B inhibition of phagocytosis.
    Nilsson JR
    J Cell Sci; 1977; 27():115-26. PubMed ID: 412853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of glyconeogenesis from amino acids by acetate in Tetrahymena pyriformis.
    Mavrides C
    Can J Biochem; 1973 Apr; 51(4):323-31. PubMed ID: 4633117
    [No Abstract]   [Full Text] [Related]  

  • 7. Studies of membrane formation in Tetrahymena pyriformis. The biosynthesis of proteins and their assembly into membranes of growing cells.
    Subbaiah PV; Thompson GA
    J Biol Chem; 1974 Feb; 249(4):1302-10. PubMed ID: 4205318
    [No Abstract]   [Full Text] [Related]  

  • 8. Calmodulin and Ca2+/calmodulin-binding proteins are involved in Tetrahymena thermophila phagocytosis.
    Gonda K; Komatsu M; Numata O
    Cell Struct Funct; 2000 Aug; 25(4):243-51. PubMed ID: 11129794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of synchrony induction. 3. Changes of water-soluble and water-insoluble protein fractions involved in synchronous rounding in Tetrahymena pyriformis.
    Watanabe Y
    Exp Cell Res; 1971 Dec; 69(2):324-8. PubMed ID: 5005916
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of insulin imprinting on the 3H-amino acid uptake of the Tetrahymena.
    Fülöp AK; Csaba G
    Acta Physiol Hung; 1990; 75(4):261-5. PubMed ID: 1963728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and partial characterization of cell-free protein-synthesizing extracts from Tetrahymena pyriformis.
    David ET; Smith KE
    Biochem J; 1981 Mar; 194(3):761-70. PubMed ID: 6796065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of puromycin and cycloheximide on vacuole formation and exocytosis in Tetrahymena pyriformis GL-9.
    Ricketts TR; Rappitt AF
    Arch Microbiol; 1975; 102(1):1-8. PubMed ID: 164157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ADF/cofilin is not essential but is critically important for actin activities during phagocytosis in Tetrahymena thermophila.
    Shiozaki N; Nakano K; Kushida Y; Noguchi TQ; Uyeda TQ; Wloga D; Dave D; Vasudevan KK; Gaertig J; Numata O
    Eukaryot Cell; 2013 Aug; 12(8):1080-6. PubMed ID: 23729382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenylalanine and methionine transport in Tetrahymena pyriformis. Characteristics of a concentrating, inducible transport system.
    Hoffmann EK; Rasmussen L
    Biochim Biophys Acta; 1972 Apr; 266(1):206-16. PubMed ID: 4339321
    [No Abstract]   [Full Text] [Related]  

  • 15. Ingestion and digestion studies in Tetrahymena pyriformis based on chemically modified microparticles.
    Dürichen H; Siegmund L; Burmester A; Fischer MS; Wöstemeyer J
    Eur J Protistol; 2016 Feb; 52():45-57. PubMed ID: 26687455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of ZIMET 3164 and ZIMET 3393 on phagocytosis in Tetrahymena pyriformis GL.
    Brutkowska M; Fritsch RS; Wollweber L
    Eur J Cell Biol; 1982 Aug; 28(1):151-4. PubMed ID: 6813120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The conversion of phenylalanine to tyrosine in Tetrahymena pyriformis.
    Mavrides C; Whitlow KJ; D'Iorio A
    J Protozool; 1973 May; 20(2):342-4. PubMed ID: 4196862
    [No Abstract]   [Full Text] [Related]  

  • 18. Growth requirements of a new food-vacuole-less mutant of Tetrahymena.
    Tiedtke A; Hünseler P; Rasmussen L
    Eur J Protistol; 1988 Oct; 23(4):350-3. PubMed ID: 23195323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport of L-asparagine in Tetrahymena pyriformis ecto-L-asparaginase is not related to L-asparagine-protein transport system.
    Tsavdaridis IK; Triantafillou DJ; Kyriakidis DA
    Biochem Int; 1991 May; 24(2):281-90. PubMed ID: 1930247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclic AMP and its functional relationship in Tetrahymena: a comparison between phagocytosis and glucose uptake.
    Csaba G; Nagy SU; Lantos T
    Acta Biol Med Ger; 1978; 37(3):505-7. PubMed ID: 216198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.