BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 11082045)

  • 1. Human Cdc5, a regulator of mitotic entry, can act as a site-specific DNA binding protein.
    Lei XH; Shen X; Xu XQ; Bernstein HS
    J Cell Sci; 2000 Dec; 113 Pt 24():4523-31. PubMed ID: 11082045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mammalian homolog of fission yeast Cdc5 regulates G2 progression and mitotic entry.
    Bernstein HS; Coughlin SR
    J Biol Chem; 1998 Feb; 273(8):4666-71. PubMed ID: 9468527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prolactin, interleukin-2 and FGF-2 stimulate expression, nuclear distribution and DNA-binding of rat homolog of pombe Cdc5 in Nb2 T lymphoma cells.
    Johnson LM; Too CK
    Mol Cell Endocrinol; 2001 Nov; 184(1-2):151-61. PubMed ID: 11694351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functions and regulation of the Polo-like kinase Cdc5 in the absence and presence of DNA damage.
    Botchkarev VV; Haber JE
    Curr Genet; 2018 Feb; 64(1):87-96. PubMed ID: 28770345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Independent modulation of the kinase and polo-box activities of Cdc5 protein unravels unique roles in the maintenance of genome stability.
    Ratsima H; Ladouceur AM; Pascariu M; Sauvé V; Salloum Z; Maddox PS; D'Amours D
    Proc Natl Acad Sci U S A; 2011 Oct; 108(43):E914-23. PubMed ID: 21987786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct domains of human CDC5 direct its nuclear import and association with the spliceosome.
    Liu L; Gräub R; Hlaing M; Epting CL; Turck CW; Xu XQ; Zhang L; Bernstein HS
    Cell Biochem Biophys; 2003; 39(2):119-32. PubMed ID: 14515018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A cDNA homologue of Schizosaccharomyces pombe cdc5(+) from the mushroom Lentinula edodes: characterization of the cDNA and its expressed product.
    Miyazaki Y; Jojima T; Ono T; Yamazaki T; Shishido K
    Biochim Biophys Acta; 2004 Oct; 1680(2):93-102. PubMed ID: 15488989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pombe Cdc5-related protein. A putative human transcription factor implicated in mitogen-activated signaling.
    Bernstein HS; Coughlin SR
    J Biol Chem; 1997 Feb; 272(9):5833-7. PubMed ID: 9038199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dbf4 regulates the Cdc5 Polo-like kinase through a distinct non-canonical binding interaction.
    Chen YC; Weinreich M
    J Biol Chem; 2010 Dec; 285(53):41244-54. PubMed ID: 21036905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The budding yeast polo-like kinase Cdc5 regulates the Ndt80 branch of the meiotic recombination checkpoint pathway.
    Acosta I; Ontoso D; San-Segundo PA
    Mol Biol Cell; 2011 Sep; 22(18):3478-90. PubMed ID: 21795394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The budding yeast Polo-like kinase localizes to distinct populations at centrosomes during mitosis.
    Botchkarev VV; Garabedian MV; Lemos B; Paulissen E; Haber JE
    Mol Biol Cell; 2017 Apr; 28(8):1011-1020. PubMed ID: 28228549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cdc28-dependent regulation of the Cdc5/Polo kinase.
    Mortensen EM; Haas W; Gygi M; Gygi SP; Kellogg DR
    Curr Biol; 2005 Nov; 15(22):2033-7. PubMed ID: 16303563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein kinases in mitotic phosphorylation of budding yeast CENP-A.
    Mishra PK; Basrai MA
    Curr Genet; 2019 Dec; 65(6):1325-1332. PubMed ID: 31119371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The yeast SUMO isopeptidase Smt4/Ulp2 and the polo kinase Cdc5 act in an opposing fashion to regulate sumoylation in mitosis and cohesion at centromeres.
    Baldwin ML; Julius JA; Tang X; Wang Y; Bachant J
    Cell Cycle; 2009 Oct; 8(20):3406-19. PubMed ID: 19823017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The budding yeast Polo-like kinase Cdc5 is released from the nucleus during anaphase for timely mitotic exit.
    Botchkarev VV; Rossio V; Yoshida S
    Cell Cycle; 2014; 13(20):3260-70. PubMed ID: 25485506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two distinct nucleic acid binding surfaces of Cdc5 regulate development.
    Wang C; Li M; Li G; Liu X; Zhao W; Yu B; Liu J; Yang J; Peng YL
    Biochem J; 2019 Nov; 476(21):3355-3368. PubMed ID: 31652438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss of CDC5 function in Saccharomyces cerevisiae leads to defects in Swe1p regulation and Bfa1p/Bub2p-independent cytokinesis.
    Park CJ; Song S; Lee PR; Shou W; Deshaies RJ; Lee KS
    Genetics; 2003 Jan; 163(1):21-33. PubMed ID: 12586693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of amino acid residues in the Caenorhabditis elegans POU protein UNC-86 that mediate UNC-86-MEC-3-DNA ternary complex formation.
    Röckelein I; Röhrig S; Donhauser R; Eimer S; Baumeister R
    Mol Cell Biol; 2000 Jul; 20(13):4806-13. PubMed ID: 10848606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Basidiomycete Lentinula edodes CDC5 and a novel interacting protein CIPB bind to a newly isolated target gene in an unusual manner.
    Nakazawa T; Kaneko S; Miyazaki Y; Jojima T; Yamazaki T; Katsukawa S; Shishido K
    Fungal Genet Biol; 2008 Jun; 45(6):818-28. PubMed ID: 18448367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A cdc5+ homolog of a higher plant, Arabidopsis thaliana.
    Hirayama T; Shinozaki K
    Proc Natl Acad Sci U S A; 1996 Nov; 93(23):13371-6. PubMed ID: 8917598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.