BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 11082463)

  • 1. Alterations in neuronal gamma-aminobutyric acid(A) receptor responsiveness in genetic models of seizure susceptibility with different expression patterns.
    Molnar LR; Fleming WW; Taylor DA
    J Pharmacol Exp Ther; 2000 Dec; 295(3):1258-66. PubMed ID: 11082463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuronal networks in the genetically epilepsy-prone rat.
    Faingold CL
    Adv Neurol; 1999; 79():311-21. PubMed ID: 10514823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of GABAA receptors in the subsensitivity of Purkinje neurons to GABA in genetic epilepsy prone rats.
    Gould EM; Curto KA; Craig CR; Fleming WW; Taylor DA
    Brain Res; 1995 Nov; 698(1-2):62-8. PubMed ID: 8581504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of audiogenically kindled seizures by gamma-aminobutyric acid-related mechanisms in the amygdala.
    Feng HJ; Naritoku DK; Randall ME; Faingold CL
    Exp Neurol; 2001 Dec; 172(2):477-81. PubMed ID: 11716572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alterations in spleen norepinephrine and lymphocyte [3H]dihydroalprenolol binding site number in genetically epilepsy-prone rats.
    Carr JA; Ortiz KA; Paxton LL; Saland LC; Savage DD
    Brain Behav Immun; 1993 Jun; 7(2):113-20. PubMed ID: 8394163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blockade of GABA uptake with tiagabine inhibits audiogenic seizures and reduces neuronal firing in the inferior colliculus of the genetically epilepsy-prone rat.
    Faingold CL; Randall ME; Anderson CA
    Exp Neurol; 1994 Apr; 126(2):225-32. PubMed ID: 7925822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurotransmitter abnormalities in genetically epileptic rodents.
    Laird HE; Dailey JW; Jobe PC
    Fed Proc; 1984 Jul; 43(10):2505-9. PubMed ID: 6145625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GABA-A receptors regulate neocortical neuronal migration in vitro and in vivo.
    Heck N; Kilb W; Reiprich P; Kubota H; Furukawa T; Fukuda A; Luhmann HJ
    Cereb Cortex; 2007 Jan; 17(1):138-48. PubMed ID: 16452638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shunting and hyperpolarizing GABAergic inhibition in the high-potassium model of ictogenesis in the developing rat hippocampus.
    Isaev D; Isaeva E; Khazipov R; Holmes GL
    Hippocampus; 2007; 17(3):210-9. PubMed ID: 17294460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity of cerebellar Purkinje neurons to neurotransmitters in genetically epileptic rats.
    Gould EM; Craig CR; Fleming WW; Taylor DA
    J Pharmacol Exp Ther; 1991 Dec; 259(3):1008-12. PubMed ID: 1684811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence that carbamazepine and antiepilepsirine may produce a component of their anticonvulsant effects by activating serotonergic neurons in genetically epilepsy-prone rats.
    Yan QS; Mishra PK; Burger RL; Bettendorf AF; Jobe PC; Dailey JW
    J Pharmacol Exp Ther; 1992 May; 261(2):652-9. PubMed ID: 1374472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A local GABAergic system within rat trigeminal ganglion cells.
    Hayasaki H; Sohma Y; Kanbara K; Maemura K; Kubota T; Watanabe M
    Eur J Neurosci; 2006 Feb; 23(3):745-57. PubMed ID: 16487155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Centrally-mediated antinociceptive actions of GABA(A) receptor agonists in the rat spared nerve injury model of neuropathic pain.
    Rode F; Jensen DG; Blackburn-Munro G; Bjerrum OJ
    Eur J Pharmacol; 2005 Jun; 516(2):131-8. PubMed ID: 15936014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sleep, temperature, activity, and prolactin phenotypes of genetically epilepsy-prone rats.
    Toth LA; Wang J; Bosgraaf C; Reichensperger J; Hughes LF; Faingold CL
    Comp Med; 2006 Oct; 56(5):402-15. PubMed ID: 17069025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alterations in beta adrenergic physiological response characteristics after long-term treatment with desmethylimipramine: interaction between norepinephrine and gamma-aminobutyric acid in rat cerebellum.
    Yeh HH; Woodward DJ
    J Pharmacol Exp Ther; 1983 Jul; 226(1):126-34. PubMed ID: 6306219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acute changes in the neuronal expression of GABA and glutamate decarboxylase isoforms in the rat piriform cortex following status epilepticus.
    Freichel C; Potschka H; Ebert U; Brandt C; Löscher W
    Neuroscience; 2006 Sep; 141(4):2177-94. PubMed ID: 16797850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alterations in mRNA expression of systems that regulate neurotransmitter synaptic content in seizure-naive genetically epilepsy-prone rat (GEPR): transporter proteins and rate-limiting synthesizing enzymes for norepinephrine, dopamine and serotonin.
    Szot P; Reigel CE; White SS; Veith RC
    Brain Res Mol Brain Res; 1996 Dec; 43(1-2):233-45. PubMed ID: 9037538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Serotonin (1A) receptor ligands act on norepinephrine neuron firing through excitatory amino acid and GABA(A) receptors: a microiontophoretic study in the rat locus coeruleus.
    Szabo ST; Blier P
    Synapse; 2001 Dec; 42(4):203-12. PubMed ID: 11746719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PLCgamma signaling underlies BDNF potentiation of Purkinje cell responses to GABA.
    Cheng Q; Yeh HH
    J Neurosci Res; 2005 Mar; 79(5):616-27. PubMed ID: 15672445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurite extension of developing noradrenergic neurons is impaired in genetically epilepsy-prone rats (GEPR-3s): an in vitro study on the locus coeruleus.
    Clough RW; Peterson BR; Steenbergen JL; Jobe PC; Eells JB; Browning RA; Mishra PK
    Epilepsy Res; 1998 Jan; 29(2):135-46. PubMed ID: 9477146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.