BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 11082773)

  • 1. Failure of local defense mechanisms in cystic fibrosis.
    Proesmans M; De Boeck K
    Acta Otorhinolaryngol Belg; 2000; 54(3):367-72. PubMed ID: 11082773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Animal models of chronic lung infection with Pseudomonas aeruginosa: useful tools for cystic fibrosis studies.
    Kukavica-Ibrulj I; Levesque RC
    Lab Anim; 2008 Oct; 42(4):389-412. PubMed ID: 18782827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Familial concordance of phenotype and microbial variation among siblings with CF.
    Picard E; Aviram M; Yahav Y; Rivlin J; Blau H; Bentur L; Avital A; Villa Y; Schwartz S; Kerem B; Kerem E
    Pediatr Pulmonol; 2004 Oct; 38(4):292-7. PubMed ID: 15334505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulatory effect of the SLC9A3 gene on susceptibility to infections and pulmonary function in children with cystic fibrosis.
    Dorfman R; Taylor C; Lin F; Sun L; Sandford A; Paré P; Berthiaume Y; Corey M; Durie P; Zielenski J;
    Pediatr Pulmonol; 2011 Apr; 46(4):385-92. PubMed ID: 20967843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How mutant CFTR may contribute to Pseudomonas aeruginosa infection in cystic fibrosis.
    Pier GB; Grout M; Zaidi TS; Goldberg JB
    Am J Respir Crit Care Med; 1996 Oct; 154(4 Pt 2):S175-82. PubMed ID: 8876538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between cystic fibrosis respiratory tract bacterial communities and age, genotype, antibiotics and Pseudomonas aeruginosa.
    Klepac-Ceraj V; Lemon KP; Martin TR; Allgaier M; Kembel SW; Knapp AA; Lory S; Brodie EL; Lynch SV; Bohannan BJ; Green JL; Maurer BA; Kolter R
    Environ Microbiol; 2010 May; 12(5):1293-303. PubMed ID: 20192960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Introduction to section I: overview of approaches to study cystic fibrosis pathophysiology.
    Clunes MT; Boucher RC
    Methods Mol Biol; 2011; 742():3-14. PubMed ID: 21547723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathophysiology and management of pulmonary infections in cystic fibrosis.
    Gibson RL; Burns JL; Ramsey BW
    Am J Respir Crit Care Med; 2003 Oct; 168(8):918-51. PubMed ID: 14555458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen, cyanide and energy generation in the cystic fibrosis pathogen Pseudomonas aeruginosa.
    Williams HD; Zlosnik JE; Ryall B
    Adv Microb Physiol; 2007; 52():1-71. PubMed ID: 17027370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fcgamma receptor IIA genotype and susceptibility to P. aeruginosa infection in patients with cystic fibrosis.
    De Rose V; Arduino C; Cappello N; Piana R; Salmin P; Bardessono M; Goia M; Padoan R; Bignamini E; Costantini D; Pizzamiglio G; Bennato V; Colombo C; Giunta A; Piazza A
    Eur J Hum Genet; 2005 Jan; 13(1):96-101. PubMed ID: 15367919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The approach to Pseudomonas aeruginosa in cystic fibrosis.
    Bendiak GN; Ratjen F
    Semin Respir Crit Care Med; 2009 Oct; 30(5):587-95. PubMed ID: 19760546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altered terminal glycosylation and the pathophysiology of CF lung disease.
    Rhim AD; Stoykova LI; Trindade AJ; Glick MC; Scanlin TF
    J Cyst Fibros; 2004 Aug; 3 Suppl 2():95-6. PubMed ID: 15463936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction between Pseudomonas aeruginosa and host defenses in cystic fibrosis.
    Marshall BC; Carroll KC
    Semin Respir Infect; 1991 Mar; 6(1):11-8. PubMed ID: 1909452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunopathophysiologic mechanisms of cystic fibrosis lung disease.
    Soferman R
    Isr Med Assoc J; 2006 Jan; 8(1):44-8. PubMed ID: 16450752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulmonary infection in mild variant cystic fibrosis: implications for care.
    Lording A; McGaw J; Dalton A; Beal G; Everard M; Taylor CJ
    J Cyst Fibros; 2006 May; 5(2):101-4. PubMed ID: 16426904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the cystic fibrosis transmembrane conductance regulator in internalization of Pseudomonas aeruginosa by polarized respiratory epithelial cells.
    Darling KE; Dewar A; Evans TJ
    Cell Microbiol; 2004 Jun; 6(6):521-33. PubMed ID: 15104594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pseudomonas respiratory infection in cystic fibrosis: a possible defect in opsonic IgG antibody?
    Fick RB; Reynolds HY
    Bull Eur Physiopathol Respir; 1983; 19(2):151-61. PubMed ID: 6871494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early aggressive eradication therapy for intermittent Pseudomonas aeruginosa airway colonization in cystic fibrosis patients: 15 years experience.
    Hansen CR; Pressler T; Høiby N
    J Cyst Fibros; 2008 Nov; 7(6):523-30. PubMed ID: 18693078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulmonary host defense: defects that lead to chronic inflammation of the airway.
    Hornick DB
    Clin Chest Med; 1988 Dec; 9(4):669-78. PubMed ID: 3148383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CFTR-dependent susceptibility of the cystic fibrosis-host to Pseudomonas aeruginosa.
    Grassmé H; Becker KA; Zhang Y; Gulbins E
    Int J Med Microbiol; 2010 Dec; 300(8):578-83. PubMed ID: 20951085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.