BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 11083525)

  • 1. Ingestion of crude oil: effects on digesta retention times and nutrient uptake in captive river otters.
    Ormseth OA; Ben-David M
    J Comp Physiol B; 2000 Sep; 170(5-6):419-28. PubMed ID: 11083525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomarker responses in river otters experimentally exposed to oil contamination.
    Ben-David M; Duffy LK; Bowyer RT
    J Wildl Dis; 2001 Jul; 37(3):489-508. PubMed ID: 11504223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for recovery of body mass and haptoglobin values of river otters following the Exxon Valdez oil spill.
    Duffy LK; Bowyer RT; Testa JW; Faro JB
    J Wildl Dis; 1994 Jul; 30(3):421-5. PubMed ID: 7933287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exposure of sea otters and harlequin ducks in Prince William Sound, Alaska, USA, to shoreline oil residues 20 years after the Exxon Valdez oil spill.
    Neff JM; Page DS; Boehm PD
    Environ Toxicol Chem; 2011 Mar; 30(3):659-72. PubMed ID: 21298711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of cytochrome P450 1A1 expression in captive river otters fed Prudhoe Bay crude oil: evaluation by immunohistochemistry and quantitative RT-PCR.
    Ben-David M; Kondratyuk T; Woodin BR; Snyder PW; Stegeman JJ
    Biomarkers; 2001; 6(3):218-35. PubMed ID: 23886277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in blood haptoglobin and length-mass relationships in river otters (Lutra canadensis) from oiled and nonoiled areas of Prince William Sound, Alaska.
    Duffy LK; Bowyer RT; Testa JW; Faro JB
    J Wildl Dis; 1993 Apr; 29(2):353-9. PubMed ID: 8487390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response of river otters to experimental exposure of weathered crude oil: fecal porphyrin profiles.
    Taylor C; Ben-David M; Bowyer RT; Duffy LK
    Environ Sci Technol; 2001 Feb; 35(4):747-52. PubMed ID: 11349287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in faecal profiles of porphyrins among river otters exposed to the Exxon Valdez oil spill.
    Blajeski A; Duffy LK; Bowyer RT
    Biomarkers; 1996; 1(4):262-6. PubMed ID: 23888993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term impacts of the Exxon Valdez oil spill on sea otters, assessed through age-dependent mortality patterns.
    Monson DH; Doak DF; Ballachey BE; Johnson A; Bodkin JL
    Proc Natl Acad Sci U S A; 2000 Jun; 97(12):6562-7. PubMed ID: 10823920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prolonged recovery of sea otters from the Exxon Valdez oil spill? A re-examination of the evidence.
    Garshelis DL; Johnson CB
    Mar Pollut Bull; 2013 Jun; 71(1-2):7-19. PubMed ID: 23639486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PCB exposure in sea otters and harlequin ducks in relation to history of contamination by the Exxon Valdez oil spill.
    Ricca MA; Keith Miles A; Ballachey BE; Bodkin JL; Esler D; Trust KA
    Mar Pollut Bull; 2010 Jun; 60(6):861-72. PubMed ID: 20132952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retrospective analysis: bile hydrocarbons and histopathology of demersal rockfish in Prince William Sound, Alaska, after the Exxon Valdez oil spill.
    Marty GD; Hoffmann A; Okihiro MS; Hepler K; Hanes D
    Mar Environ Res; 2003 Dec; 56(5):569-84. PubMed ID: 12927739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Are sea otters being exposed to subsurface intertidal oil residues from the Exxon Valdez oil spill?
    Boehm PD; Page DS; Neff JM; Brown JS
    Mar Pollut Bull; 2011 Mar; 62(3):581-9. PubMed ID: 21185036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential tree and shrub production in response to fertilization and disturbance by coastal river otters in Alaska.
    Roe AM; Meyer CB; Nibbelink NP; Ben-David M
    Ecology; 2010 Nov; 91(11):3177-88. PubMed ID: 21141179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vertical distribution and probability of encountering intertidal Exxon Valdez oil on shorelines of three embayments within Prince William Sound, Alaska.
    Short JW; Maselko JM; Lindeberg MR; Harris PM; Rice SD
    Environ Sci Technol; 2006 Jun; 40(12):3723-9. PubMed ID: 16830533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histopathologic lesions in sea otters exposed to crude oil.
    Lipscomb TP; Harris RK; Moeller RB; Pletcher JM; Haebler RJ; Ballachey BE
    Vet Pathol; 1993 Jan; 30(1):1-11. PubMed ID: 8442322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Criteria for oil spill recovery: a case study of the intertidal community of Prince William Sound, Alaska, following the Exxon Valdez oil spill.
    Skalski JR; Coats DA; Fukuyama AK
    Environ Manage; 2001 Jul; 28(1):9-18. PubMed ID: 11437004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Risk of weathered residual Exxon Valdez oil to pink salmon embryos in Prince William Sound.
    Brannon EL; Collins KM; Cronin MA; Moulton LL; Parker KR; Wilson W
    Environ Toxicol Chem; 2007 Apr; 26(4):780-6. PubMed ID: 17447564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Survival in air of Mytilus trossulus following long-term exposure to spilled Exxon Valdez crude oil in Prince William Sound.
    Thomas RE; Harris PM; Rice SD
    Comp Biochem Physiol C Pharmacol Toxicol Endocrinol; 1999 Jan; 122(1):147-52. PubMed ID: 10190039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. K-ras oncogene DNA sequences in pink salmon in streams impacted by the Exxon Valdez oil spill: no evidence of oil-induced heritable mutations.
    Cronin MA; Wickliffe JK; Dunina Y; Baker RJ
    Ecotoxicology; 2002 Aug; 11(4):233-41. PubMed ID: 12211696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.