These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 11083785)

  • 21. Interaction of Chlamydiae with human macrophages.
    Herweg JA; Rudel T
    FEBS J; 2016 Feb; 283(4):608-18. PubMed ID: 26613554
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of apoptotic activities during chlamydia trachomatis infection in primary cervical epithelial cells.
    Vats V; Agrawal T; Salhan S; Mittal A
    Immunol Invest; 2010; 39(7):674-87. PubMed ID: 20840054
    [TBL] [Abstract][Full Text] [Related]  

  • 23. EphrinA2 receptor (EphA2) is an invasion and intracellular signaling receptor for Chlamydia trachomatis.
    Subbarayal P; Karunakaran K; Winkler AC; Rother M; Gonzalez E; Meyer TF; Rudel T
    PLoS Pathog; 2015 Apr; 11(4):e1004846. PubMed ID: 25906164
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detection of a microbial metabolite by STING regulates inflammasome activation in response to Chlamydia trachomatis infection.
    Webster SJ; Brode S; Ellis L; Fitzmaurice TJ; Elder MJ; Gekara NO; Tourlomousis P; Bryant C; Clare S; Chee R; Gaston HJS; Goodall JC
    PLoS Pathog; 2017 Jun; 13(6):e1006383. PubMed ID: 28570638
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influx of podoplanin-expressing inflammatory macrophages into the genital tract following Chlamydia infection.
    Chan YT; Cheok YY; Cheong HC; Tan GMY; Seow SR; Tang TF; Sulaiman S; Looi CY; Gupta R; Arulanandam B; Wong WF
    Immunol Cell Biol; 2023 Apr; 101(4):305-320. PubMed ID: 36658328
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chlamydia trachomatis infection of cultured motile cells after uptake of chlamydiae from the substratum.
    Campbell S; Yates PS; Richmond SJ
    J Gen Microbiol; 1993 Sep; 139(9):2151-8. PubMed ID: 8245840
    [TBL] [Abstract][Full Text] [Related]  

  • 27.
    Wang X; Rockey DD; Dolan BP
    Infect Immun; 2020 Jul; 88(8):. PubMed ID: 32423914
    [No Abstract]   [Full Text] [Related]  

  • 28. Effect of Chlamydia trachomatis infection and subsequent tumor necrosis factor alpha secretion on apoptosis in the murine genital tract.
    Perfettini JL; Darville T; Gachelin G; Souque P; Huerre M; Dautry-Varsat A; Ojcius DM
    Infect Immun; 2000 Apr; 68(4):2237-44. PubMed ID: 10722625
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Implications for persistent chlamydial infections of phagocyte-microorganism interplay.
    Sarov I; Geron E; Shemer-Avni Y; Manor E; Zvillich M; Wallach D; Schmitz E; Holtman H
    Eur J Clin Microbiol Infect Dis; 1991 Feb; 10(2):119-23. PubMed ID: 1907541
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetics of chlamydial antigen processing and presentation to T cells by paraformaldehyde-fixed murine bone marrow-derived macrophages.
    Su H; Caldwell HD
    Infect Immun; 1995 Mar; 63(3):946-53. PubMed ID: 7868267
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fc receptor regulation of protective immunity against Chlamydia trachomatis.
    Moore T; Ananaba GA; Bolier J; Bowers S; Belay T; Eko FO; Igietseme JU
    Immunology; 2002 Feb; 105(2):213-21. PubMed ID: 11872097
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Host nectin-1 is required for efficient Chlamydia trachomatis serovar E development.
    Hall JV; Sun J; Slade J; Kintner J; Bambino M; Whittimore J; Schoborg RV
    Front Cell Infect Microbiol; 2014; 4():158. PubMed ID: 25414835
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Immediate cytotoxicity of Chlamydia trachomatis for mouse peritoneal macrophages.
    Kuo CC
    Infect Immun; 1978 Jun; 20(3):613-8. PubMed ID: 352950
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hematopoietic cells are required to initiate a Chlamydia trachomatis-specific CD8+ T cell response.
    Steele LN; Balsara ZR; Starnbach MN
    J Immunol; 2004 Nov; 173(10):6327-37. PubMed ID: 15528372
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Host immune responses after hypoxic reactivation of IFN-γ induced persistent Chlamydia trachomatis infection.
    Jerchel S; Kaufhold I; Schuchardt L; Shima K; Rupp J
    Front Cell Infect Microbiol; 2014; 4():43. PubMed ID: 24783060
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Infection of myocytes with chlamydiae.
    Wang G; Burczynski F; Hasinoff B; Zhong G
    Microbiology (Reading); 2002 Dec; 148(Pt 12):3955-3959. PubMed ID: 12480899
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Broad degradation of proapoptotic proteins with the conserved Bcl-2 homology domain 3 during infection with Chlamydia trachomatis.
    Ying S; Seiffert BM; Häcker G; Fischer SF
    Infect Immun; 2005 Mar; 73(3):1399-403. PubMed ID: 15731037
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An early event in the herpes simplex virus type-2 replication cycle is sufficient to induce Chlamydia trachomatis persistence.
    Deka S; Vanover J; Sun J; Kintner J; Whittimore J; Schoborg RV
    Cell Microbiol; 2007 Mar; 9(3):725-37. PubMed ID: 17140408
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recruitment of BAD by the Chlamydia trachomatis vacuole correlates with host-cell survival.
    Verbeke P; Welter-Stahl L; Ying S; Hansen J; Häcker G; Darville T; Ojcius DM
    PLoS Pathog; 2006 May; 2(5):e45. PubMed ID: 16710454
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Type III Secretion Effector CteG Mediates Host Cell Lytic Exit of
    Pereira IS; Pais SV; Borges V; Borrego MJ; Gomes JP; Mota LJ
    Front Cell Infect Microbiol; 2022; 12():902210. PubMed ID: 35903198
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.