These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

620 related articles for article (PubMed ID: 11084031)

  • 1. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery.
    Futaki S; Suzuki T; Ohashi W; Yagami T; Tanaka S; Ueda K; Sugiura Y
    J Biol Chem; 2001 Feb; 276(8):5836-40. PubMed ID: 11084031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural variety of membrane permeable peptides.
    Futaki S; Goto S; Suzuki T; Nakase I; Sugiura Y
    Curr Protein Pept Sci; 2003 Apr; 4(2):87-96. PubMed ID: 12678848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Translocation of branched-chain arginine peptides through cell membranes: flexibility in the spatial disposition of positive charges in membrane-permeable peptides.
    Futaki S; Nakase I; Suzuki T; Youjun Z; Sugiura Y
    Biochemistry; 2002 Jun; 41(25):7925-30. PubMed ID: 12069581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arginine-rich peptides: potential for intracellular delivery of macromolecules and the mystery of the translocation mechanisms.
    Futaki S
    Int J Pharm; 2002 Oct; 245(1-2):1-7. PubMed ID: 12270237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus.
    Vivès E; Brodin P; Lebleu B
    J Biol Chem; 1997 Jun; 272(25):16010-7. PubMed ID: 9188504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane permeability commonly shared among arginine-rich peptides.
    Futaki S; Goto S; Sugiura Y
    J Mol Recognit; 2003; 16(5):260-4. PubMed ID: 14523938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane-permeable arginine-rich peptides and the translocation mechanisms.
    Futaki S
    Adv Drug Deliv Rev; 2005 Feb; 57(4):547-58. PubMed ID: 15722163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stearylated arginine-rich peptides: a new class of transfection systems.
    Futaki S; Ohashi W; Suzuki T; Niwa M; Tanaka S; Ueda K; Harashima H; Sugiura Y
    Bioconjug Chem; 2001; 12(6):1005-11. PubMed ID: 11716693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Possible existence of common internalization mechanisms among arginine-rich peptides.
    Suzuki T; Futaki S; Niwa M; Tanaka S; Ueda K; Sugiura Y
    J Biol Chem; 2002 Jan; 277(4):2437-43. PubMed ID: 11711547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of arginine-rich peptides from the HIV Tat protein reveals unusual features of RNA-protein recognition.
    Calnan BJ; Biancalana S; Hudson D; Frankel AD
    Genes Dev; 1991 Feb; 5(2):201-10. PubMed ID: 1899841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TAT peptide internalization: seeking the mechanism of entry.
    Vivès E; Richard JP; Rispal C; Lebleu B
    Curr Protein Pept Sci; 2003 Apr; 4(2):125-32. PubMed ID: 12678851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oligoarginine vectors for intracellular delivery: design and cellular-uptake mechanisms.
    Futaki S
    Biopolymers; 2006; 84(3):241-9. PubMed ID: 16333858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel glutamine-RNA interaction identified by screening libraries in mammalian cells.
    Tan R; Frankel AD
    Proc Natl Acad Sci U S A; 1998 Apr; 95(8):4247-52. PubMed ID: 9539722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tat peptide-mediated cellular delivery: back to basics.
    Brooks H; Lebleu B; Vivès E
    Adv Drug Deliv Rev; 2005 Feb; 57(4):559-77. PubMed ID: 15722164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High affinity binding of TAR RNA by the human immunodeficiency virus type-1 tat protein requires base-pairs in the RNA stem and amino acid residues flanking the basic region.
    Churcher MJ; Lamont C; Hamy F; Dingwall C; Green SM; Lowe AD; Butler JG; Gait MJ; Karn J
    J Mol Biol; 1993 Mar; 230(1):90-110. PubMed ID: 8450553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional analysis of interactions between Tat and the trans-activation response element of human immunodeficiency virus type 1 in cells.
    Luo Y; Madore SJ; Parslow TG; Cullen BR; Peterlin BM
    J Virol; 1993 Sep; 67(9):5617-22. PubMed ID: 8350414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro selection of ribozymes dependent on peptides for activity.
    Robertson MP; Knudsen SM; Ellington AD
    RNA; 2004 Jan; 10(1):114-27. PubMed ID: 14681590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transduction of human catalase mediated by an HIV-1 TAT protein basic domain and arginine-rich peptides into mammalian cells.
    Jin LH; Bahn JH; Eum WS; Kwon HY; Jang SH; Han KH; Kang TC; Won MH; Kang JH; Cho SW; Park J; Choi SY
    Free Radic Biol Med; 2001 Dec; 31(11):1509-19. PubMed ID: 11728823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different mechanisms for cellular internalization of the HIV-1 Tat-derived cell penetrating peptide and recombinant proteins fused to Tat.
    Silhol M; Tyagi M; Giacca M; Lebleu B; Vivès E
    Eur J Biochem; 2002 Jan; 269(2):494-501. PubMed ID: 11856307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural variety of arginine-rich RNA-binding peptides.
    Tan R; Frankel AD
    Proc Natl Acad Sci U S A; 1995 Jun; 92(12):5282-6. PubMed ID: 7777498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.