BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 11084034)

  • 1. The Mu enhancer is functionally asymmetric both in cis and in trans. Topological selectivity of Mu transposition is enhancer-independent.
    Jiang H; Harshey RM
    J Biol Chem; 2001 Feb; 276(6):4373-81. PubMed ID: 11084034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancer-independent Mu transposition from two topologically distinct synapses.
    Yin Z; Harshey RM
    Proc Natl Acad Sci U S A; 2005 Dec; 102(52):18884-9. PubMed ID: 16380426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gin-mediated recombination of catenated and knotted DNA substrates: implications for the mechanism of interaction between cis-acting sites.
    Kanaar R; van de Putte P; Cozzarelli NR
    Cell; 1989 Jul; 58(1):147-59. PubMed ID: 2546671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of DNA topology in Mu transposition: mechanism of sensing the relative orientation of two DNA segments.
    Craigie R; Mizuuchi K
    Cell; 1986 Jun; 45(6):793-800. PubMed ID: 3011279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A unique right end-enhancer complex precedes synapsis of Mu ends: the enhancer is sequestered within the transpososome throughout transposition.
    Pathania S; Jayaram M; Harshey RM
    EMBO J; 2003 Jul; 22(14):3725-36. PubMed ID: 12853487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of phage Mu enhancer and termini that specify the assembly of a topologically unique interwrapped transpososome.
    Yin Z; Suzuki A; Lou Z; Jayaram M; Harshey RM
    J Mol Biol; 2007 Sep; 372(2):382-96. PubMed ID: 17669422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contributions of supercoiling to Tn3 resolvase and phage Mu Gin site-specific recombination.
    Benjamin KR; Abola AP; Kanaar R; Cozzarelli NR
    J Mol Biol; 1996 Feb; 256(1):50-65. PubMed ID: 8609613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Path of DNA within the Mu transpososome. Transposase interactions bridging two Mu ends and the enhancer trap five DNA supercoils.
    Pathania S; Jayaram M; Harshey RM
    Cell; 2002 May; 109(4):425-36. PubMed ID: 12086600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Action at a distance in Mu DNA transposition: an enhancer-like element is the site of action of supercoiling relief activity by integration host factor (IHF).
    Surette MG; Lavoie BD; Chaconas G
    EMBO J; 1989 Nov; 8(11):3483-9. PubMed ID: 2555166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancer-independent variants of phage Mu transposase: enhancer-specific stimulation of catalytic activity by a partner transposase.
    Yang JY; Jayaram M; Harshey RM
    Genes Dev; 1995 Oct; 9(20):2545-55. PubMed ID: 7590234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Criss-crossed interactions between the enhancer and the att sites of phage Mu during DNA transposition.
    Jiang H; Yang JY; Harshey RM
    EMBO J; 1999 Jul; 18(13):3845-55. PubMed ID: 10393199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Mu transposase interwraps distant DNA sites within a functional transpososome in the absence of DNA supercoiling.
    Yin Z; Jayaram M; Pathania S; Harshey RM
    J Biol Chem; 2005 Feb; 280(7):6149-56. PubMed ID: 15563455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transpososomes: stable protein-DNA complexes involved in the in vitro transposition of bacteriophage Mu DNA.
    Surette MG; Buch SJ; Chaconas G
    Cell; 1987 Apr; 49(2):253-62. PubMed ID: 3032448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the A protein-binding sites in the in vitro transposition of mu DNA. A complex circuit of interactions involving the mu ends and the transpositional enhancer.
    Allison RG; Chaconas G
    J Biol Chem; 1992 Oct; 267(28):19963-70. PubMed ID: 1328189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Mu transpositional enhancer can function in trans: requirement of the enhancer for synapsis but not strand cleavage.
    Surette MG; Chaconas G
    Cell; 1992 Mar; 68(6):1101-8. PubMed ID: 1312394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA-protein cooperativity in the assembly and stabilization of mu strand transfer complex. Relevance of DNA phasing and att site cleavage.
    Namgoong SY; Jayaram M; Kim K; Harshey RM
    J Mol Biol; 1994 May; 238(4):514-27. PubMed ID: 8176742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA-protein complexes during attachment-site synapsis in Mu DNA transposition.
    Kuo CF; Zou AH; Jayaram M; Getzoff E; Harshey R
    EMBO J; 1991 Jun; 10(6):1585-91. PubMed ID: 1851088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transposition studies of mini-Mu plasmids constructed from the chemically synthesized ends of bacteriophage Mu.
    Patterson TA; Court DL; Dubuc G; Michniewicz JJ; Goodchild J; Bukhari AI; Narang SA
    Gene; 1986; 50(1-3):101-9. PubMed ID: 3034727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-site synapsis during Mu DNA transposition: a critical intermediate preceding engagement of the active site.
    Watson MA; Chaconas G
    Cell; 1996 May; 85(3):435-45. PubMed ID: 8616898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of distinct domains in Mu transposase with Mu DNA ends and an internal transpositional enhancer.
    Leung PC; Teplow DB; Harshey RM
    Nature; 1989 Apr; 338(6217):656-8. PubMed ID: 2539564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.