These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 11084144)

  • 1. Effects of tensile forces on the expression of type III collagen in rat interparietal suture.
    Tanaka E; Miyawaki Y; Tanaka M; Watanabe M; Lee K; del Pozo R; Tanne K
    Arch Oral Biol; 2000 Dec; 45(12):1049-57. PubMed ID: 11084144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in the biomechanical properties of the rat interparietal suture incident to continuous tensile force application.
    Tanaka E; Miyawaki Y; del Pozo R; Tanne K
    Arch Oral Biol; 2000 Dec; 45(12):1059-64. PubMed ID: 11084145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of force level on synthesis of type III and type I collagen in mouse interparietal suture.
    Yen EH; Yue CS; Suga DM
    J Dent Res; 1989 Dec; 68(12):1746-51. PubMed ID: 2600254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The morphologic and biochemical effects of tensile force application to the interparietal suture of the Sprague-Dawley rat.
    Miyawaki S; Forbes DP
    Am J Orthod Dentofacial Orthop; 1987 Aug; 92(2):123-33. PubMed ID: 3475967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of duration and magnitude of tensile mechanical forces on sutural tissue in vivo.
    Steenvoorden GP; van de Velde JP; Prahl-Andersen B
    Eur J Orthod; 1990 Aug; 12(3):330-9. PubMed ID: 2401341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteopontin expression in osteoblasts and osteocytes during bone formation under mechanical stress in the calvarial suture in vivo.
    Morinobu M; Ishijima M; Rittling SR; Tsuji K; Yamamoto H; Nifuji A; Denhardt DT; Noda M
    J Bone Miner Res; 2003 Sep; 18(9):1706-15. PubMed ID: 12968681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanics of cranial sutures using the finite element method.
    Jasinoski SC; Reddy BD; Louw KK; Chinsamy A
    J Biomech; 2010 Dec; 43(16):3104-11. PubMed ID: 20825945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rabbit cranial suture fibroblasts under tension express a different collagen phenotype.
    Meikle MC; Heath JK; Hembry RM; Reynolds JJ
    Arch Oral Biol; 1982; 27(7):609-13. PubMed ID: 6957175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Tissue response of the interparietal suture to tensile stimulus in vitro--light and electron microscopic observations].
    Inage S
    Kokubyo Gakkai Zasshi; 1985 Mar; 52(1):143-61. PubMed ID: 3894544
    [No Abstract]   [Full Text] [Related]  

  • 10. The load-displacement characteristics of neonatal rat cranial sutures.
    McLaughlin E; Zhang Y; Pashley D; Borke J; Yu J
    Cleft Palate Craniofac J; 2000 Nov; 37(6):590-5. PubMed ID: 11108529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of tensile force on the expression of IGF-I and IGF-I receptor in the organ-cultured rat cranial suture.
    Hirukawa K; Miyazawa K; Maeda H; Kameyama Y; Goto S; Togari A
    Arch Oral Biol; 2005 Mar; 50(3):367-72. PubMed ID: 15740717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of sutural growth rate on collagen phenotype synthesis.
    Yen EH; Yue CS; Suga DM
    J Dent Res; 1989 Jun; 68(6):1058-63. PubMed ID: 2808863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stress and displacement patterns in the craniofacial skeleton with rapid maxillary expansion: a finite element method study.
    Gautam P; Valiathan A; Adhikari R
    Am J Orthod Dentofacial Orthop; 2007 Jul; 132(1):5.e1-11. PubMed ID: 17628242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of tensile force magnitude on release of cranial suture cells into S phase.
    Hickory WB; Nanda R
    Am J Orthod Dentofacial Orthop; 1987 Apr; 91(4):328-34. PubMed ID: 3471076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dura mater maintains rat cranial sutures in vitro by regulating suture cell proliferation and collagen production.
    Opperman LA; Chhabra A; Nolen AA; Bao Y; Ogle RC
    J Craniofac Genet Dev Biol; 1998; 18(3):150-8. PubMed ID: 9785219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compressive force promotes chondrogenic differentiation and hypertrophy in midpalatal suture cartilage in growing rats.
    Saitoh S; Takahashi I; Mizoguchi I; Sasano Y; Kagayama M; Mitani H
    Anat Rec; 2000 Dec; 260(4):392-401. PubMed ID: 11074405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison and evaluation of stresses generated by rapid maxillary expansion and the implant-supported rapid maxillary expansion on the craniofacial structures using finite element method of stress analysis.
    Jain V; Shyagali TR; Kambalyal P; Rajpara Y; Doshi J
    Prog Orthod; 2017 Dec; 18(1):3. PubMed ID: 28092094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recombinant human bone morphogenetic protein-2 stimulates bone formation during interfrontal suture expansion in rabbits.
    Liu SS; Xu H; Sun J; Kontogiorgos E; Whittington PR; Misner KG; Kyung HM; Buschang PH; Opperman LA
    Am J Orthod Dentofacial Orthop; 2013 Aug; 144(2):210-7. PubMed ID: 23910202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous stressing of mouse interparietal suture fibroblasts in vitro.
    Yen EH; Pollit DJ; Whyte WA; Suga DM
    J Dent Res; 1990 Jan; 69(1):26-30. PubMed ID: 2406303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of in vitro models for investigating the response of fibrous joints to tensile mechanical stress.
    Meikle MC; Heath JK; Reynolds JJ
    Am J Orthod; 1984 Feb; 85(2):141-53. PubMed ID: 6093541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.