These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 11084243)

  • 1. Micro-scale measurement of the mechanical properties of compressed pharmaceutical powders. 1: The elasticity and fracture behavior of microcrystalline cellulose.
    Hancock BC; Clas SD; Christensen K
    Int J Pharm; 2000 Nov; 209(1-2):27-35. PubMed ID: 11084243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro-scale measurement of the mechanical properties of compressed pharmaceutical powders. 2: The dynamic moduli of microcrystalline cellulose.
    Hancock BC; Dalton CR; Clas S
    Int J Pharm; 2001 Oct; 228(1-2):139-45. PubMed ID: 11576776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The characterization of the mechanical properties of microcrystalline cellulose: a fracture mechanics approach.
    Mashadi AB; Newton JM
    J Pharm Pharmacol; 1987 Dec; 39(12):961-5. PubMed ID: 2894442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-destructive assessment of mechanical properties of microcrystalline cellulose compacts.
    Palomäki E; Ehlers H; Antikainen O; Sandler N; Yliruusi J
    Int J Pharm; 2015 Nov; 495(2):633-41. PubMed ID: 26410756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanical properties of compacts of microcrystalline cellulose and silicified microcrystalline cellulose.
    Edge S; Steele DF; Chen A; Tobyn MJ; Staniforth JN
    Int J Pharm; 2000 Apr; 200(1):67-72. PubMed ID: 10845687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation and modelling approach of the mechanical properties of compacts made with binary mixtures of pharmaceutical excipients.
    Busignies V; Leclerc B; Porion P; Evesque P; Couarraze G; Tchoreloff P
    Eur J Pharm Biopharm; 2006 Aug; 64(1):51-65. PubMed ID: 16750353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "Apparent" Young's elastic modulus and radial recovery for some tableted pharmaceutical excipients.
    Kachrimanis K; Malamataris S
    Eur J Pharm Sci; 2004 Feb; 21(2-3):197-207. PubMed ID: 14757491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-destructive determination of anisotropic mechanical properties of pharmaceutical solid dosage forms.
    Akseli I; Hancock BC; Cetinkaya C
    Int J Pharm; 2009 Jul; 377(1-2):35-44. PubMed ID: 19426791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurements of elastic moduli of pharmaceutical compacts: a new methodology using double compaction on a compaction simulator.
    Mazel V; Busignies V; Diarra H; Tchoreloff P
    J Pharm Sci; 2012 Jun; 101(6):2220-8. PubMed ID: 22430162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the links between elastic constants and effective elastic behavior of pharmaceutical compacts: importance of poisson's ratio and use of bulk modulus.
    Mazel V; Busignies V; Diarra H; Tchoreloff P
    J Pharm Sci; 2013 Nov; 102(11):4009-14. PubMed ID: 23963744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anisotropic porous structure of pharmaceutical compacts evaluated by PGSTE-NMR in relation to mechanical property anisotropy.
    Porion P; Busignies V; Mazel V; Leclerc B; Evesque P; Tchoreloff P
    Pharm Res; 2010 Oct; 27(10):2221-33. PubMed ID: 20697782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative evaluation of powder and tableting properties of low and high degree of polymerization cellulose I and cellulose II excipients.
    de la Luz Reus Medina M; Kumar V
    Int J Pharm; 2007 Jun; 337(1-2):202-9. PubMed ID: 17376616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of adsorbed water on tensile strength and Young's modulus of moldings determined by means of a three-point bending method.
    Tsukamoto T; Chen CY; Okamoto H; Danjo K
    Chem Pharm Bull (Tokyo); 2000 Jun; 48(6):769-73. PubMed ID: 10866134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic assessment of mean grain size in pharmaceutical compacts.
    Smith CJ; Stephens JD; Hancock BC; Vahdat AS; Cetinkaya C
    Int J Pharm; 2011 Oct; 419(1-2):137-46. PubMed ID: 21821106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Axial tensile fracture of microcrystalline cellulose compacts.
    Inman SJ; Briscoe BJ; Pitt KG; Shiu C
    Int J Pharm; 2008 Feb; 349(1-2):172-9. PubMed ID: 17889465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural heterogeneity of pharmaceutical compacts probed by micro-indentation.
    Lee J
    J Mater Sci Mater Med; 2008 May; 19(5):1981-90. PubMed ID: 17943416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nondestructive measurements of the compact strength and the particle-size distribution after milling of roller compacted powders by near-infrared spectroscopy.
    Gupta A; Peck GE; Miller RW; Morris KR
    J Pharm Sci; 2004 Apr; 93(4):1047-53. PubMed ID: 14999740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Porosity on Strength Distribution of Microcrystalline Cellulose.
    Keleṣ Ö; Barcenas NP; Sprys DH; Bowman KJ
    AAPS PharmSciTech; 2015 Dec; 16(6):1455-64. PubMed ID: 26022545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The surface layer of pharmaceutical compacts: the role of the punch surface and its impact on the mechanical properties of the compacts.
    Mazel V; Busignies V; Diarra H; Reiche I; Tchoreloff P
    Int J Pharm; 2013 Feb; 442(1-2):42-8. PubMed ID: 22902389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of ambient moisture on the compaction behavior of microcrystalline cellulose powder undergoing uni-axial compression and roller-compaction: a comparative study using near-infrared spectroscopy.
    Gupta A; Peck GE; Miller RW; Morris KR
    J Pharm Sci; 2005 Oct; 94(10):2301-13. PubMed ID: 16136560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.