These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 11084287)

  • 1. Diastereoselective protein methionine oxidation by reactive oxygen species and diastereoselective repair by methionine sulfoxide reductase.
    Sharov VS; Schöneich C
    Free Radic Biol Med; 2000 Nov; 29(10):986-94. PubMed ID: 11084287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diastereoselective reduction of protein-bound methionine sulfoxide by methionine sulfoxide reductase.
    Sharov VS; Ferrington DA; Squier TC; Schöneich C
    FEBS Lett; 1999 Jul; 455(3):247-50. PubMed ID: 10437782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-affinity and cooperative binding of oxidized calmodulin by methionine sulfoxide reductase.
    Xiong Y; Chen B; Smallwood HS; Urbauer RJ; Markille LM; Galeva N; Williams TD; Squier TC
    Biochemistry; 2006 Dec; 45(49):14642-54. PubMed ID: 17144657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repair of oxidized calmodulin by methionine sulfoxide reductase restores ability to activate the plasma membrane Ca-ATPase.
    Sun H; Gao J; Ferrington DA; Biesiada H; Williams TD; Squier TC
    Biochemistry; 1999 Jan; 38(1):105-12. PubMed ID: 9890888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membranous adenylyl cyclase 1 activation is regulated by oxidation of N- and C-terminal methionine residues in calmodulin.
    Lübker C; Urbauer RJ; Moskovitz J; Dove S; Weisemann J; Fedorova M; Urbauer JL; Seifert R
    Biochem Pharmacol; 2015 Jan; 93(2):196-209. PubMed ID: 25462816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Essential role of methionine residues in calmodulin binding to Bordetella pertussis adenylate cyclase, as probed by selective oxidation and repair by the peptide methionine sulfoxide reductases.
    Vougier S; Mary J; Dautin N; Vinh J; Friguet B; Ladant D
    J Biol Chem; 2004 Jul; 279(29):30210-8. PubMed ID: 15148319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased catalytic efficiency following gene fusion of bifunctional methionine sulfoxide reductase enzymes from Shewanella oneidensis.
    Chen B; Markillie LM; Xiong Y; Mayer MU; Squier TC
    Biochemistry; 2007 Dec; 46(49):14153-61. PubMed ID: 17997579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calorimetry and mass spectrometry study of oxidized calmodulin interaction with target and differential repair by methionine sulfoxide reductases.
    Tsvetkov PO; Ezraty B; Mitchell JK; Devred F; Peyrot V; Derrick PJ; Barras F; Makarov AA; Lafitte D
    Biochimie; 2005 May; 87(5):473-80. PubMed ID: 15820754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox regulation of methionine in calmodulin affects the activity levels of senescence-related transcription factors in litchi.
    Jiang G; Xiao L; Yan H; Zhang D; Wu F; Liu X; Su X; Dong X; Wang J; Duan X; Jiang Y
    Biochim Biophys Acta Gen Subj; 2017 May; 1861(5 Pt A):1140-1151. PubMed ID: 28188859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional characterization of methionine sulfoxide reductases from Leptospira interrogans.
    Sasoni N; Hartman MD; Guerrero SA; Iglesias AA; Arias DG
    Biochim Biophys Acta Proteins Proteom; 2021 Feb; 1869(2):140575. PubMed ID: 33242654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peptide methionine sulfoxide reductase: biochemistry and physiological role.
    Brot N; Weissbach H
    Biopolymers; 2000; 55(4):288-96. PubMed ID: 11169920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidation of methionine residues of proteins: biological consequences.
    Stadtman ER; Moskovitz J; Levine RL
    Antioxid Redox Signal; 2003 Oct; 5(5):577-82. PubMed ID: 14580313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative modification of a carboxyl-terminal vicinal methionine in calmodulin by hydrogen peroxide inhibits calmodulin-dependent activation of the plasma membrane Ca-ATPase.
    Yao Y; Yin D; Jas GS; Kuczer K; Williams TD; Schöneich C; Squier TC
    Biochemistry; 1996 Feb; 35(8):2767-87. PubMed ID: 8611584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free-energy simulations of the oxidation of c-terminal methionines in calmodulin.
    Jas GS; Kuczera K
    Proteins; 2002 Aug; 48(2):257-68. PubMed ID: 12112694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative stress and protein aggregation during biological aging.
    Squier TC
    Exp Gerontol; 2001 Sep; 36(9):1539-50. PubMed ID: 11525876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid method for quantifying the extent of methionine oxidation in intact calmodulin.
    Galeva NA; Esch SW; Williams TD; Markille LM; Squier TC
    J Am Soc Mass Spectrom; 2005 Sep; 16(9):1470-1480. PubMed ID: 16023363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stereospecific oxidation of calmodulin by methionine sulfoxide reductase A.
    Lim JC; Kim G; Levine RL
    Free Radic Biol Med; 2013 Aug; 61():257-64. PubMed ID: 23583331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methionine sulfoxide reduction in mammals: characterization of methionine-R-sulfoxide reductases.
    Kim HY; Gladyshev VN
    Mol Biol Cell; 2004 Mar; 15(3):1055-64. PubMed ID: 14699060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulating protein activity and cellular function by methionine residue oxidation.
    Cui ZJ; Han ZQ; Li ZY
    Amino Acids; 2012 Aug; 43(2):505-17. PubMed ID: 22146868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidation of methionyl residues in proteins: tools, targets, and reversal.
    Vogt W
    Free Radic Biol Med; 1995 Jan; 18(1):93-105. PubMed ID: 7896176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.