These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 11084293)
41. Yeast osmosensors Hkr1 and Msb2 activate the Hog1 MAPK cascade by different mechanisms. Tanaka K; Tatebayashi K; Nishimura A; Yamamoto K; Yang HY; Saito H Sci Signal; 2014 Feb; 7(314):ra21. PubMed ID: 24570489 [TBL] [Abstract][Full Text] [Related]
42. Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. Maeda T; Takekawa M; Saito H Science; 1995 Jul; 269(5223):554-8. PubMed ID: 7624781 [TBL] [Abstract][Full Text] [Related]
43. Response to different oxidants of Saccharomyces cerevisiae ure2Delta mutant. Todorova TT; Petrova VY; Vuilleumier S; Kujumdzieva AV Arch Microbiol; 2009 Nov; 191(11):837-45. PubMed ID: 19777209 [TBL] [Abstract][Full Text] [Related]
44. Ssk1p-independent activation of Ssk2p plays an important role in the osmotic stress response in Saccharomyces cerevisiae: alternative activation of Ssk2p in osmotic stress. Zhi H; Tang L; Xia Y; Zhang J PLoS One; 2013; 8(2):e54867. PubMed ID: 23457455 [TBL] [Abstract][Full Text] [Related]
45. Complementary function of mitogen-activated protein kinase Hog1 from Trichosporonoides megachiliensis in Saccharomyces cerevisiae under hyper-osmotic stress. Yoshida J; Kobayashi Y; Tanaka Y; Koyama Y; Ogihara J; Kato J; Shima J; Kasumi T J Biosci Bioeng; 2013 Feb; 115(2):127-32. PubMed ID: 23063696 [TBL] [Abstract][Full Text] [Related]
46. Role of Sho1p adaptor in the pseudohyphal development, drugs sensitivity, osmotolerance and oxidant stress adaptation in the opportunistic yeast Candida lusitaniae. Boisnard S; Ruprich-Robert G; Florent M; Da Silva B; Chapeland-Leclerc F; Papon N Yeast; 2008 Nov; 25(11):849-59. PubMed ID: 19061190 [TBL] [Abstract][Full Text] [Related]
47. Signaling of chloroquine-induced stress in the yeast Saccharomyces cerevisiae requires the Hog1 and Slt2 mitogen-activated protein kinase pathways. Baranwal S; Azad GK; Singh V; Tomar RS Antimicrob Agents Chemother; 2014 Sep; 58(9):5552-66. PubMed ID: 25022582 [TBL] [Abstract][Full Text] [Related]
48. Oxidant-specific regulation of protein synthesis in Candida albicans. Sundaram A; Grant CM Fungal Genet Biol; 2014 Jun; 67():15-23. PubMed ID: 24699161 [TBL] [Abstract][Full Text] [Related]
49. Farnesol induces hydrogen peroxide resistance in Candida albicans yeast by inhibiting the Ras-cyclic AMP signaling pathway. Deveau A; Piispanen AE; Jackson AA; Hogan DA Eukaryot Cell; 2010 Apr; 9(4):569-77. PubMed ID: 20118211 [TBL] [Abstract][Full Text] [Related]
50. Multiple Yap1p-binding sites mediate induction of the yeast major facilitator FLR1 gene in response to drugs, oxidants, and alkylating agents. Nguyên DT; Alarco AM; Raymond M J Biol Chem; 2001 Jan; 276(2):1138-45. PubMed ID: 11056165 [TBL] [Abstract][Full Text] [Related]
51. Gcn4 is required for the response to peroxide stress in the yeast Saccharomyces cerevisiae. Mascarenhas C; Edwards-Ingram LC; Zeef L; Shenton D; Ashe MP; Grant CM Mol Biol Cell; 2008 Jul; 19(7):2995-3007. PubMed ID: 18417611 [TBL] [Abstract][Full Text] [Related]
52. Activation of the Hog1p kinase in Isc1p-deficient yeast cells is associated with mitochondrial dysfunction, oxidative stress sensitivity and premature aging. Barbosa AD; Graça J; Mendes V; Chaves SR; Amorim MA; Mendes MV; Moradas-Ferreira P; Côrte-Real M; Costa V Mech Ageing Dev; 2012 May; 133(5):317-30. PubMed ID: 22445853 [TBL] [Abstract][Full Text] [Related]
53. The Saccharomyces cerevisiae AP-1 protein discriminates between oxidative stress elicited by the oxidants H2O2 and diamide. Wemmie JA; Steggerda SM; Moye-Rowley WS J Biol Chem; 1997 Mar; 272(12):7908-14. PubMed ID: 9065458 [TBL] [Abstract][Full Text] [Related]
54. Comparative Proteomics Analysis Reveals Unique Early Signaling Response of Pandey P; Zaman K; Prokai L; Shulaev V Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33375274 [TBL] [Abstract][Full Text] [Related]
55. Differential stabilities of phosphorylated response regulator domains reflect functional roles of the yeast osmoregulatory SLN1 and SSK1 proteins. Janiak-Spens F; Sparling JM; Gurfinkel M; West AH J Bacteriol; 1999 Jan; 181(2):411-7. PubMed ID: 9882653 [TBL] [Abstract][Full Text] [Related]
56. Characterization of sensor-specific stress response by transcriptional profiling of wsc1 and mid2 deletion strains and chimeric sensors in Saccharomyces cerevisiae. Bermejo C; García R; Straede A; Rodríguez-Peña JM; Nombela C; Heinisch JJ; Arroyo J OMICS; 2010 Dec; 14(6):679-88. PubMed ID: 20958245 [TBL] [Abstract][Full Text] [Related]
58. A model-based study delineating the roles of the two signaling branches of Saccharomyces cerevisiae, Sho1 and Sln1, during adaptation to osmotic stress. Parmar JH; Bhartiya S; Venkatesh KV Phys Biol; 2009 Aug; 6(3):036019. PubMed ID: 19657148 [TBL] [Abstract][Full Text] [Related]
59. Analysis of Saccharomyces cerevisiae proteins induced by peroxide and superoxide stress. Jamieson DJ; Rivers SL; Stephen DW Microbiology (Reading); 1994 Dec; 140 ( Pt 12)():3277-83. PubMed ID: 7881546 [TBL] [Abstract][Full Text] [Related]
60. A docking site determining specificity of Pbs2 MAPKK for Ssk2/Ssk22 MAPKKKs in the yeast HOG pathway. Tatebayashi K; Takekawa M; Saito H EMBO J; 2003 Jul; 22(14):3624-34. PubMed ID: 12853477 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]