These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 11084293)
61. The Rho1 GTPase acts together with a vacuolar glutathione S-conjugate transporter to protect yeast cells from oxidative stress. Lee ME; Singh K; Snider J; Shenoy A; Paumi CM; Stagljar I; Park HO Genetics; 2011 Aug; 188(4):859-70. PubMed ID: 21625004 [TBL] [Abstract][Full Text] [Related]
62. Phosphorelay signaling in yeast in response to changes in osmolarity. Santos JL; Shiozaki K Sci STKE; 2004 Dec; 2004(262):tr12. PubMed ID: 15585692 [TBL] [Abstract][Full Text] [Related]
63. Mitogen-activated protein kinase-activated protein kinase 2 mediates resistance to hydrogen peroxide-induced oxidative stress in human hepatobiliary cancer cells. Nguyen Ho-Bouldoires TH; Clapéron A; Mergey M; Wendum D; Desbois-Mouthon C; Tahraoui S; Fartoux L; Chettouh H; Merabtene F; Scatton O; Gaestel M; Praz F; Housset C; Fouassier L Free Radic Biol Med; 2015 Dec; 89():34-46. PubMed ID: 26169728 [TBL] [Abstract][Full Text] [Related]
64. A yeast protein similar to bacterial two-component regulators. Ota IM; Varshavsky A Science; 1993 Oct; 262(5133):566-9. PubMed ID: 8211183 [TBL] [Abstract][Full Text] [Related]
65. Saccharomyces cerevisiae Hog1 MAP kinase pathway is activated in response to honokiol exposure. Sun LM; Liao K J Appl Microbiol; 2018 Mar; 124(3):754-763. PubMed ID: 29165856 [TBL] [Abstract][Full Text] [Related]
66. Function and expression of flavohemoglobin in Saccharomyces cerevisiae. Evidence for a role in the oxidative stress response. Zhao XJ; Raitt D; V Burke P; Clewell AS; Kwast KE; Poyton RO J Biol Chem; 1996 Oct; 271(41):25131-8. PubMed ID: 8810268 [TBL] [Abstract][Full Text] [Related]
67. Mammalian mitogen-activated protein kinase kinase kinase (MEKK) can function in a yeast mitogen-activated protein kinase pathway downstream of protein kinase C. Blumer KJ; Johnson GL; Lange-Carter CA Proc Natl Acad Sci U S A; 1994 May; 91(11):4925-9. PubMed ID: 8197159 [TBL] [Abstract][Full Text] [Related]
68. Yeast osmosensor Sln1 and plant cytokinin receptor Cre1 respond to changes in turgor pressure. Reiser V; Raitt DC; Saito H J Cell Biol; 2003 Jun; 161(6):1035-40. PubMed ID: 12821642 [TBL] [Abstract][Full Text] [Related]
69. Adaptive tolerance to oxidative stress and the induction of antioxidant enzymatic activities in Candida albicans are independent of the Hog1 and Cap1-mediated pathways. Gónzalez-Párraga P; Alonso-Monge R; Plá J; Argüelles JC FEMS Yeast Res; 2010 Sep; 10(6):747-56. PubMed ID: 20608985 [TBL] [Abstract][Full Text] [Related]
70. Flavohemoglobin expression and function in Saccharomyces cerevisiae. No relationship with respiration and complex response to oxidative stress. Buisson N; Labbe-Bois R J Biol Chem; 1998 Apr; 273(16):9527-33. PubMed ID: 9545281 [TBL] [Abstract][Full Text] [Related]
71. The essential protein fap7 is involved in the oxidative stress response of Saccharomyces cerevisiae. Juhnke H; Charizanis C; Latifi F; Krems B; Entian KD Mol Microbiol; 2000 Feb; 35(4):936-48. PubMed ID: 10692169 [TBL] [Abstract][Full Text] [Related]
72. A Comprehensive Membrane Interactome Mapping of Sho1p Reveals Fps1p as a Novel Key Player in the Regulation of the HOG Pathway in S. cerevisiae. Lam MH; Snider J; Rehal M; Wong V; Aboualizadeh F; Drecun L; Wong O; Jubran B; Li M; Ali M; Jessulat M; Deineko V; Miller R; Lee Me; Park HO; Davidson A; Babu M; Stagljar I J Mol Biol; 2015 Jun; 427(11):2088-103. PubMed ID: 25644660 [TBL] [Abstract][Full Text] [Related]
73. Oxidative stress induces DNA fragmentation and caspase activation via the c-Jun NH2-terminal kinase pathway in H9c2 cardiac muscle cells. Turner NA; Xia F; Azhar G; Zhang X; Liu L; Wei JY J Mol Cell Cardiol; 1998 Sep; 30(9):1789-801. PubMed ID: 9769235 [TBL] [Abstract][Full Text] [Related]
74. A cytoplasmic coiled-coil domain is required for histidine kinase activity of the yeast osmosensor, SLN1. Tao W; Malone CL; Ault AD; Deschenes RJ; Fassler JS Mol Microbiol; 2002 Jan; 43(2):459-73. PubMed ID: 11985722 [TBL] [Abstract][Full Text] [Related]
75. Phylogenetic diversity of stress signalling pathways in fungi. Nikolaou E; Agrafioti I; Stumpf M; Quinn J; Stansfield I; Brown AJ BMC Evol Biol; 2009 Feb; 9():44. PubMed ID: 19232129 [TBL] [Abstract][Full Text] [Related]
76. Hydroquinone, a benzene metabolite, induces Hog1-dependent stress response signaling and causes aneuploidy in Saccharomyces cerevisiae. Shiga T; Suzuki H; Yamamoto A; Yamamoto H; Yamamoto K J Radiat Res; 2010; 51(4):405-15. PubMed ID: 20467201 [TBL] [Abstract][Full Text] [Related]
77. Hog1p mitogen-activated protein kinase determines acetic acid resistance in Saccharomyces cerevisiae. Mollapour M; Piper PW FEMS Yeast Res; 2006 Dec; 6(8):1274-80. PubMed ID: 17156024 [TBL] [Abstract][Full Text] [Related]
78. The HOG MAP kinase pathway is required for the induction of methylglyoxal-responsive genes and determines methylglyoxal resistance in Saccharomyces cerevisiae. Aguilera J; Rodríguez-Vargas S; Prieto JA Mol Microbiol; 2005 Apr; 56(1):228-39. PubMed ID: 15773992 [TBL] [Abstract][Full Text] [Related]
79. Yeast complementation reveals a role for an Arabidopsis thaliana late embryogenesis abundant (LEA)-like protein in oxidative stress tolerance. Mowla SB; Cuypers A; Driscoll SP; Kiddle G; Thomson J; Foyer CH; Theodoulou FL Plant J; 2006 Dec; 48(5):743-56. PubMed ID: 17092320 [TBL] [Abstract][Full Text] [Related]
80. Application of a YHB1-GFP reporter to detect nitrosative stress in yeast. Lewinska A; Grzelak A; Bartosz G Redox Rep; 2008; 13(4):161-71. PubMed ID: 18647486 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]