BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 11084866)

  • 21. Evaluation of a multicapillary electrophoresis instrument for mitochondrial DNA typing.
    Stewart JE; Aagaard PJ; Pokorak EG; Polanskey D; Budowle B
    J Forensic Sci; 2003 May; 48(3):571-80. PubMed ID: 12762527
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular and structural considerations of TF-DNA binding for the generation of biologically meaningful and accurate phylogenetic footprinting analysis: the LysR-type transcriptional regulator family as a study model.
    Oliver P; Peralta-Gil M; Tabche ML; Merino E
    BMC Genomics; 2016 Aug; 17(1):686. PubMed ID: 27567672
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Footprinting DNA-protein interactions in native polyacrylamide gels by chemical nucleolytic activity of 1,10-phenanthroline-copper.
    Papavassiliou AG
    Methods Mol Biol; 2009; 543():163-99. PubMed ID: 19378167
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Translation toeprinting assays using fluorescently labeled primers and capillary electrophoresis.
    Gould PS; Bird H; Easton AJ
    Biotechniques; 2005 Mar; 38(3):397-400. PubMed ID: 15786806
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dissection of the DNA-binding domain of Xenopus laevis TFIIIA. Quantitative DNase I footprinting analysis of specific complexes between a 5 S RNA gene fragment and N-terminal fragments of TFIIIA containing three, four or five zinc-finger domains.
    Hansen PK; Christensen JH; Nyborg J; Lillelund O; Thøgersen HC
    J Mol Biol; 1993 Sep; 233(2):191-202. PubMed ID: 8377197
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-throughput single-nucleotide structural mapping by capillary automated footprinting analysis.
    Mitra S; Shcherbakova IV; Altman RB; Brenowitz M; Laederach A
    Nucleic Acids Res; 2008 Jun; 36(11):e63. PubMed ID: 18477638
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In cellulo DNA analysis (LMPCR footprinting).
    Drouin R; Bastien N; Millau JF; Vigneault F; Paradis I
    Methods Mol Biol; 2009; 543():293-336. PubMed ID: 19378174
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determination of a transcription-factor-binding site by nuclease protection footprinting onto southwestern blots.
    Papavassiliou AG
    Methods Mol Biol; 2001; 148():135-49. PubMed ID: 11357582
    [No Abstract]   [Full Text] [Related]  

  • 29. Detection of regulatory polymorphisms: high-throughput capillary DNase I footprinting.
    Hancock M; Shephard EA
    Methods Mol Biol; 2013; 987():269-82. PubMed ID: 23475685
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNase I footprinting of small molecule binding sites on DNA.
    Bailly C; Kluza J; Martin C; Ellis T; Waring MJ
    Methods Mol Biol; 2005; 288():319-42. PubMed ID: 15333913
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of an ALFexpress DNA sequencer to analyze protein-nucleic acid interactions by band shift assay.
    Filée P; Delmarcelle M; Thamm I; Joris B
    Biotechniques; 2001 May; 30(5):1044-8, 1050-1. PubMed ID: 11355340
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo footprinting of the interaction of proteins with DNA and RNA.
    Grange T; Bertrand E; Espinás ML; Fromont-Racine M; Rigaud G; Roux J; Pictet R
    Methods; 1997 Feb; 11(2):151-63. PubMed ID: 8993027
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Large DNA fragment sizing using native acrylamide gels on an automated DNA sequencer and GENESCAN software.
    McEvoy CR; Seshadri R; Firgaira FA
    Biotechniques; 1998 Sep; 25(3):464-70. PubMed ID: 9762444
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determination of a transcription factor-binding site by nuclease protection footprinting onto southwestern blots.
    Papavassiliou AG
    Methods Mol Biol; 2009; 543():201-18. PubMed ID: 19378168
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A 96-well DNase I footprinting screen for drug-DNA interactions.
    Ellis T; Evans DA; Martin CR; Hartley JA
    Nucleic Acids Res; 2007; 35(12):e89. PubMed ID: 17586817
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Importance of tetramer formation by the nitrogen assimilation control protein for strong repression of glutamate dehydrogenase formation in Klebsiella pneumoniae.
    Rosario CJ; Bender RA
    J Bacteriol; 2005 Dec; 187(24):8291-9. PubMed ID: 16321933
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiple androgen response elements and a Myc consensus site in the androgen receptor (AR) coding region are involved in androgen-mediated up-regulation of AR messenger RNA.
    Grad JM; Dai JL; Wu S; Burnstein KL
    Mol Endocrinol; 1999 Nov; 13(11):1896-911. PubMed ID: 10551783
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction of Ap1, Ap2, and Sp1 with the regulatory regions of the human pro-alpha1(I) collagen gene.
    Vergeer WP; Sogo JM; Pretorius PJ; de Vries WN
    Arch Biochem Biophys; 2000 May; 377(1):69-79. PubMed ID: 10775443
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultraviolet-laser footprinting.
    Geiselmann J; Boccard F
    Methods Mol Biol; 2001; 148():161-73. PubMed ID: 11357584
    [No Abstract]   [Full Text] [Related]  

  • 40. Footprinting: a method for determining the sequence selectivity, affinity and kinetics of DNA-binding ligands.
    Hampshire AJ; Rusling DA; Broughton-Head VJ; Fox KR
    Methods; 2007 Jun; 42(2):128-40. PubMed ID: 17472895
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.