These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 11084866)

  • 81. (1,4,7-trimethyl-1,4,7-triazacyclononane)iron (III)-mediated cleavage of DNA: detection of selected protein-DNA interactions.
    Ehmann A; Chafin D; Lee KM; Hayes JJ
    Nucleic Acids Res; 1998 May; 26(9):2086-91. PubMed ID: 9547264
    [TBL] [Abstract][Full Text] [Related]  

  • 82. High-resolution footprinting of sequence-specific protein-DNA contacts.
    Storek MJ; Ernst A; Verdine GL
    Nat Biotechnol; 2002 Feb; 20(2):183-6. PubMed ID: 11821865
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Sasquatch: predicting the impact of regulatory SNPs on transcription factor binding from cell- and tissue-specific DNase footprints.
    Schwessinger R; Suciu MC; McGowan SJ; Telenius J; Taylor S; Higgs DR; Hughes JR
    Genome Res; 2017 Oct; 27(10):1730-1742. PubMed ID: 28904015
    [TBL] [Abstract][Full Text] [Related]  

  • 84. DNase I footprinting analysis of transcription factors recognizing adrenergic receptor gene promoter sequences.
    Gao B; Kunos G
    Methods Mol Biol; 2000; 126():419-29. PubMed ID: 10685427
    [No Abstract]   [Full Text] [Related]  

  • 85. Identifying specific protein-DNA interactions within living cells, or in "in vivo footprinting".
    Zaret K
    Methods; 1997 Feb; 11(2):149-50. PubMed ID: 8993026
    [No Abstract]   [Full Text] [Related]  

  • 86. Solid phase DNase I footprinting: quick and versatile.
    Sandaltzopoulos R; Becker PB
    Nucleic Acids Res; 1994 Apr; 22(8):1511-2. PubMed ID: 8190649
    [No Abstract]   [Full Text] [Related]  

  • 87. PAP-LMPCR for improved, allele-specific footprinting and automated chromatin fine structure analysis.
    Ingram R; Gao C; Lebon J; Liu Q; Mayoral RJ; Sommer SS; Hoogenkamp M; Riggs AD; Bonifer C
    Nucleic Acids Res; 2008 Feb; 36(3):e19. PubMed ID: 18208840
    [TBL] [Abstract][Full Text] [Related]  

  • 88. A highly sensitive in vivo footprinting technique for condition-dependent identification of cis elements.
    Gorsche R; Jovanovic B; Gudynaite-Savitch L; Mach RL; Mach-Aigner AR
    Nucleic Acids Res; 2014 Jan; 42(1):e1. PubMed ID: 24097437
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Properties of DNase I digestion of the deoxyoligonucleotide: 5'd(ATCGTACGAT)2(3').
    Fish EL; Vournakis JN
    Nucleic Acids Res; 1987 Nov; 15(22):9417-28. PubMed ID: 3684598
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Automated fluorescent DNA sequencing by a simplified solid-phase chemical sequencing method.
    Ohara R; Tanaka A; Ohara O
    Biotechniques; 1997 Apr; 22(4):653-6. PubMed ID: 9105616
    [No Abstract]   [Full Text] [Related]  

  • 91. fRFLP and fAFLP: medium-throughput genotyping by fluorescently post-labeling restriction digestion.
    Lazzaro BP; Sceurman BK; Carney SL; Clark AG
    Biotechniques; 2002 Sep; 33(3):539-40, 542, 545-6. PubMed ID: 12238764
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Automated sequencing of fluorescently labelled DNA by chemical degradation.
    Rosenthal A; Sproat B; Voss H; Stegemann J; Schwager C; Erfle H; Zimmermann J; Coutelle C; Ansorge W
    DNA Seq; 1990; 1(1):63-71. PubMed ID: 2132960
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Fluorescence-based classification of microsatellites using a single-wavelength semiautomatic sequencer: genotype assignment and identity tests by analysis of comigrating peak profiles.
    Moscetti A; Boschi I; Dobosz M; Destro-Bisol G; Pescarmona M; d'Aloja E; Pascali VL
    Electrophoresis; 1995 Oct; 16(10):1875-80. PubMed ID: 8586056
    [TBL] [Abstract][Full Text] [Related]  

  • 94. A simple method for DNaseI footprinting analysis.
    Lin KC; Shiuan D
    J Biochem Biophys Methods; 1995 Feb; 30(1):85-9. PubMed ID: 7608473
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Magnetic bead purification of labeled DNA fragments for high-throughput capillary electrophoresis sequencing.
    Elkin C; Kapur H; Smith T; Humphries D; Pollard M; Hammon N; Hawkins T
    Biotechniques; 2002 Jun; 32(6):1296, 1298-1300, 1302. PubMed ID: 12074160
    [TBL] [Abstract][Full Text] [Related]  

  • 96. A fast algorithm for the construction of universal footprinting templates in DNA.
    Anderson JW; Fox KR; Niblo GA
    J Math Biol; 2006 Mar; 52(3):307-42. PubMed ID: 16328479
    [TBL] [Abstract][Full Text] [Related]  

  • 97. High-speed separations of DNA sequencing reactions by capillary electrophoresis.
    Drossman H; Luckey JA; Kostichka AJ; D'Cunha J; Smith LM
    Anal Chem; 1990 May; 62(9):900-3. PubMed ID: 2363514
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Template-directed interference footprinting of protein-phosphate contacts in DNA.
    Nyanguile O; Verdine GL
    Org Lett; 2001 Jan; 3(1):71-4. PubMed ID: 11429875
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Semiautomated and rapid quantification of nucleic acid footprinting and structure mapping experiments.
    Laederach A; Das R; Vicens Q; Pearlman SM; Brenowitz M; Herschlag D; Altman RB
    Nat Protoc; 2008; 3(9):1395-401. PubMed ID: 18772866
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Transcription factors without footprints.
    Rusk N
    Nat Methods; 2014 Oct; 11(10):988-9. PubMed ID: 25392880
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.