BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 11084870)

  • 1. Pyrophosphorolysis-activated polymerization (PAP): application to allele-specific amplification.
    Liu Q; Sommer SS
    Biotechniques; 2000 Nov; 29(5):1072-6, 1078, 1080 passim. PubMed ID: 11084870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrophosphorolysis-activatable oligonucleotides may facilitate detection of rare alleles, mutation scanning and analysis of chromatin structures.
    Liu Q; Sommer SS
    Nucleic Acids Res; 2002 Jan; 30(2):598-604. PubMed ID: 11788724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyrophosphorolysis by Type II DNA polymerases: implications for pyrophosphorolysis-activated polymerization.
    Liu Q; Sommer SS
    Anal Biochem; 2004 Jan; 324(1):22-8. PubMed ID: 14654041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PAP: detection of ultra rare mutations depends on P* oligonucleotides: "sleeping beauties" awakened by the kiss of pyrophosphorolysis.
    Liu Q; Sommer SS
    Hum Mutat; 2004 May; 23(5):426-36. PubMed ID: 15108273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of extremely rare alleles by bidirectional pyrophosphorolysis-activated polymerization allele-specific amplification (Bi-PAP-A): measurement of mutation load in mammalian tissues.
    Liu Q; Sommer SS
    Biotechniques; 2004 Jan; 36(1):156-66. PubMed ID: 14740499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of ultrarare somatic mutation in the human TP53 gene by bidirectional pyrophosphorolysis-activated polymerization allele-specific amplification.
    Shi J; Liu Q; Sommer SS
    Hum Mutat; 2007 Feb; 28(2):131-6. PubMed ID: 17041903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-invasive prenatal diagnosis of beta-thalassemia and sickle-cell disease using pyrophosphorolysis-activated polymerization and melting curve analysis.
    Phylipsen M; Yamsri S; Treffers EE; Jansen DT; Kanhai WA; Boon EM; Giordano PC; Fucharoen S; Bakker E; Harteveld CL
    Prenat Diagn; 2012 Jun; 32(6):578-87. PubMed ID: 22517437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel blocker-PCR method for detection of rare mutant alleles in the presence of an excess amount of normal DNA.
    Seyama T; Ito T; Hayashi T; Mizuno T; Nakamura N; Akiyama M
    Nucleic Acids Res; 1992 May; 20(10):2493-6. PubMed ID: 1598207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and mapping of the pyrophosphorolytic activity of the phage phi 29 DNA polymerase. Involvement of amino acid motifs highly conserved in alpha-like DNA polymerases.
    Blasco MA; Bernad A; Blanco L; Salas M
    J Biol Chem; 1991 Apr; 266(12):7904-9. PubMed ID: 1850426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PCR amplification of specific alleles (PASA) is a general method for rapidly detecting known single-base changes.
    Sommer SS; Groszbach AR; Bottema CD
    Biotechniques; 1992 Jan; 12(1):82-7. PubMed ID: 1734929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiplex dosage pyrophosphorolysis-activated polymerization: application to the detection of heterozygous deletions.
    Liu Q; Nguyen VQ; Li X; Sommer SS
    Biotechniques; 2006 May; 40(5):661-8. PubMed ID: 16708764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic analysis of C4 polymorphism by use of DNA amplification (PCR), allele-specific oligonucleotide probes and allele-specific restriction enzymes.
    Berg ES; Teisberg P; Olaisen B
    Ann Hum Genet; 1989 Jul; 53(3):221-7. PubMed ID: 2556959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium is a cofactor of polymerization but inhibits pyrophosphorolysis by the Sulfolobus solfataricus DNA polymerase Dpo4.
    Irimia A; Zang H; Loukachevitch LV; Eoff RL; Guengerich FP; Egli M
    Biochemistry; 2006 May; 45(19):5949-56. PubMed ID: 16681366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PCR amplification of specific alleles: rapid detection of known mutations and polymorphisms.
    Bottema CD; Sommer SS
    Mutat Res; 1993 Jul; 288(1):93-102. PubMed ID: 7686270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-specificity single-tube multiplex genotyping using Ribo-PAP PCR, tag primers, alkali cleavage of RNA/DNA chimeras and MALDI-TOF MS.
    Mauger F; Gelfand DH; Gupta A; Bodepudi V; Will SG; Bauer K; Myers TW; Gut IG
    Hum Mutat; 2013 Jan; 34(1):266-73. PubMed ID: 23132774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Analogs of pyrophosphate in a pyrophosphorolysis reaction catalyzed by DNA polymerases].
    Rozovskaia TA; Tarusova NB; Minasian ShKh; Atrazhev AM; Kukhanova MK
    Mol Biol (Mosk); 1989; 23(3):862-71. PubMed ID: 2549402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiplex allele-specific target amplification based on PCR suppression.
    Broude NE; Zhang L; Woodward K; Englert D; Cantor CR
    Proc Natl Acad Sci U S A; 2001 Jan; 98(1):206-11. PubMed ID: 11136256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-round allele specific-polymerase chain reaction: a simple and highly sensitive method for JAK2V617F mutation detection.
    Kannim S; Thongnoppakhun W; Auewarakul CU
    Clin Chim Acta; 2009 Mar; 401(1-2):148-51. PubMed ID: 19135044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative enriched PCR (QEPCR), a highly sensitive method for detection of K-ras oncogene mutation.
    Ronai Z; Minamoto T
    Hum Mutat; 1997; 10(4):322-5. PubMed ID: 9338587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of known mutation by proof-reading PCR.
    Bi W; Stambrook PJ
    Nucleic Acids Res; 1998 Jun; 26(12):3073-5. PubMed ID: 9611257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.