These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 11085647)

  • 1. On the role of strain in blue copper proteins.
    Ryde U; Olsson MH; Roos BO; De Kerpel JO; Pierloot K
    J Biol Inorg Chem; 2000 Oct; 5(5):565-74. PubMed ID: 11085647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cupric geometry of blue copper proteins is not strained.
    Ryde U; Olsson MH; Pierloot K; Roos BO
    J Mol Biol; 1996 Aug; 261(4):586-96. PubMed ID: 8794878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein strain in blue copper proteins studied by free energy perturbations.
    De Kerpel JO; Ryde U
    Proteins; 1999 Aug; 36(2):157-74. PubMed ID: 10398364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper coordination in blue proteins.
    Gray HB; Malmström BG; Williams RJ
    J Biol Inorg Chem; 2000 Oct; 5(5):551-9. PubMed ID: 11085645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy saving electron pathways in proteins.
    Larsson S
    J Biol Inorg Chem; 2000 Oct; 5(5):560-4. PubMed ID: 11085646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blue copper proteins: a comparative analysis of their molecular interaction properties.
    De Rienzo F; Gabdoulline RR; Menziani MC; Wade RC
    Protein Sci; 2000 Aug; 9(8):1439-54. PubMed ID: 10975566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis underlying the electron transfer features of a blue copper protein auracyanin from the photosynthetic bacterium Roseiflexus castenholzii.
    Wang C; Xin Y; Min Z; Qi J; Zhang C; Xu X
    Photosynth Res; 2020 Mar; 143(3):301-314. PubMed ID: 31933173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum chemical calculations of the reorganization energy of blue-copper proteins.
    Olsson MH; Ryde U; Roos BO
    Protein Sci; 1998 Dec; 7(12):2659-68. PubMed ID: 9865961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic structure and its relation to function in copper proteins.
    Szilagyi RK; Solomon EI
    Curr Opin Chem Biol; 2002 Apr; 6(2):250-8. PubMed ID: 12039012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active site structures and the redox properties of blue copper proteins: atomic resolution structure of azurin II and electronic structure calculations of azurin, plastocyanin and stellacyanin.
    Paraskevopoulos K; Sundararajan M; Surendran R; Hough MA; Eady RR; Hillier IH; Hasnain SS
    Dalton Trans; 2006 Jul; (25):3067-76. PubMed ID: 16786065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of novel copper sites by mutation of the axial ligand of amicyanin. Atomic resolution structures and spectroscopic properties.
    Carrell CJ; Ma JK; Antholine WE; Hosler JP; Mathews FS; Davidson VL
    Biochemistry; 2007 Feb; 46(7):1900-12. PubMed ID: 17295442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation of rhombic distortion of the type 1 copper site of M98Q amicyanin with increased electron transfer reorganization energy.
    Ma JK; Mathews FS; Davidson VL
    Biochemistry; 2007 Jul; 46(29):8561-8. PubMed ID: 17602663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mimicking biological electron transfer and oxygen activation involving iron and copper proteins: a bio(in)organic supramolecular approach.
    Feiters MC
    Met Ions Biol Syst; 2001; 38():461-655. PubMed ID: 11219019
    [No Abstract]   [Full Text] [Related]  

  • 14. An outer-sphere hydrogen-bond network constrains copper coordination in blue proteins.
    Machczynski MC; Gray HB; Richards JH
    J Inorg Biochem; 2002 Feb; 88(3-4):375-80. PubMed ID: 11897353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-ligand interactions in perturbed blue copper sites: a paramagnetic (1)H NMR study of Co(II)-pseudoazurin.
    Fernández CO; Niizeki T; Kohzuma T; Vila AJ
    J Biol Inorg Chem; 2003 Jan; 8(1-2):75-82. PubMed ID: 12459901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic and density functional studies of the red copper site in nitrosocyanin: role of the protein in determining active site geometric and electronic structure.
    Basumallick L; Sarangi R; DeBeer George S; Elmore B; Hooper AB; Hedman B; Hodgson KO; Solomon EI
    J Am Chem Soc; 2005 Mar; 127(10):3531-44. PubMed ID: 15755175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metalloproteins diversified: the auracyanins are a family of cupredoxins that stretch the spectral and redox limits of blue copper proteins.
    King JD; McIntosh CL; Halsey CM; Lada BM; Niedzwiedzki DM; Cooley JW; Blankenship RE
    Biochemistry; 2013 Nov; 52(46):8267-75. PubMed ID: 24147561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide ejects electrons from the binuclear centre of cytochrome c oxidase by reacting with oxidised copper: a general mechanism for the interaction of copper proteins with nitric oxide?
    Cooper CE; Torres J; Sharpe MA; Wilson MT
    FEBS Lett; 1997 Sep; 414(2):281-4. PubMed ID: 9315702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the energetics of conformational changes and pH dependent redox behaviour of electron transfer proteins.
    Rogers NK; Moore GR
    FEBS Lett; 1988 Feb; 228(1):69-73. PubMed ID: 2830136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct evidence for a geometrically constrained "entatic state" effect on copper(II/I) electron-transfer kinetics as manifested in metastable intermediates.
    Yu Q; Salhi CA; Ambundo EA; Heeg MJ; Ochrymowycz LA; Rorabacher DB
    J Am Chem Soc; 2001 Jun; 123(24):5720-9. PubMed ID: 11403604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.