These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 11086667)

  • 1. Increases in body mass of rats during spaceflight: models and measurements.
    Wade CE; Ortiz RM; Baer LA
    Aviat Space Environ Med; 2000 Nov; 71(11):1126-30. PubMed ID: 11086667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Body mass change during altered gravity: spaceflight, centrifugation, and return to 1 G.
    Wade CE; Harper JS; Daunton NG; Corcoran ML; Morey-Holton E
    J Gravit Physiol; 1997 Oct; 4(3):43-8. PubMed ID: 11541868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction of pituitary AVP and OT contents in rats following spaceflight.
    Wade CE; Keil LC
    Aviat Space Environ Med; 1998 Jun; 69(6 Suppl):A53-7. PubMed ID: 10776454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resting energy expenditure of rats acclimated to hypergravity.
    Wade CE; Moran MM; Oyama J
    Aviat Space Environ Med; 2002 Sep; 73(9):859-64. PubMed ID: 12234035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rat anterior pituitary hormone cells: responses to variable gravity.
    Shellenberger KE; Grindeland RE; Hymer WC
    Aviat Space Environ Med; 1998 Jun; 69(6 Suppl):A37-44. PubMed ID: 10776451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of hyper- and microgravity on rat muscle, organ weights and selected plasma constituents.
    Vasques M; Lang C; Grindeland RE; Roy RR; Daunton N; Bigbee AJ; Wade CE
    Aviat Space Environ Med; 1998 Jun; 69(6 Suppl):A2-8. PubMed ID: 10776445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypergravity does not affect testicular function.
    Veeramachaneni DN; Deaver DR; Amann RP
    Aviat Space Environ Med; 1998 Jun; 69(6 Suppl):A49-52. PubMed ID: 10776453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer systems analysis of spaceflight induced changes in left ventricular mass.
    Summers RL; Martin DS; Meck JV; Coleman TG
    Comput Biol Med; 2007 Mar; 37(3):358-63. PubMed ID: 16808910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insight into mechanisms of reduced orthostatic performance after exposure to microgravity: comparison of ground-based and space flight data.
    Convertino VA
    J Gravit Physiol; 1998 Jul; 5(1):P85-8. PubMed ID: 11542376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. +Gx tolerance by females following long-duration simulated and spaceflight microgravity.
    Koloteva MI; Lukianiuk VY; Vil-Viliams IF; Kotovskaya AR
    J Gravit Physiol; 2004 Jul; 11(2):P101-2. PubMed ID: 16235434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dose-dependent effects of hypergravity on body mass in mature rats.
    Kita S; Shibata S; Kim H; Otsubo A; Ito M; Iwasaki K
    Aviat Space Environ Med; 2006 Aug; 77(8):842-5. PubMed ID: 16909879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood volume and erythropoiesis in the rat during spaceflight.
    Udden MM; Driscoll TB; Gibson LA; Patton CS; Pickett MH; Jones JB; Nachtman R; Allebban Z; Ichiki AT; Lange RD
    Aviat Space Environ Med; 1995 Jun; 66(6):557-61. PubMed ID: 7646406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Spacelab 3 simulation: basis for a model of growth plate response in microgravity in the rat.
    Montufar-Solis D; Duke PJ; Morey-Holton E
    J Gravit Physiol; 2001 Dec; 8(2):67-76. PubMed ID: 12365452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hindlimb-suspension and spaceflight both alter cGMP levels in rat choroid plexus.
    Carcenac C; Herbute S; Masseguin C; Mani-Ponset L; Maurel D; Briggs R; Guell A; Gabrion JB
    J Gravit Physiol; 1999 Oct; 6(2):17-24. PubMed ID: 11543082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model for studying the baroreflex in microgravity and hypergravity.
    Shimizu T
    J Gravit Physiol; 2000 Jul; 7(2):P51-4. PubMed ID: 12697535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of microgravity and hypergravity on platelet functions.
    Dai K; Wang Y; Yan R; Shi Q; Wang Z; Yuan Y; Cheng H; Li S; Fan Y; Zhuang F
    Thromb Haemost; 2009 May; 101(5):902-10. PubMed ID: 19404544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A ground-based animal model of space adaptation syndrome.
    Takeda N; Horii A; Uno A; Morita M; Mochizuki T; Yamatodani A; Kubo T
    J Vestib Res; 1996; 6(6):403-9. PubMed ID: 8968968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spaceflight and hindlimb suspension disuse models in mice.
    Milstead JR; Simske SJ; Bateman TA
    Biomed Sci Instrum; 2004; 40():105-10. PubMed ID: 15133943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypergravity-induced increase in plasma catecholamine and corticosterone levels in telemetrically collected blood of rats during centrifugation.
    Petrak J; Mravec B; Jurani M; Baranovska M; Tillinger A; Hapala I; Frollo I; Kvetnanský R
    Ann N Y Acad Sci; 2008 Dec; 1148():201-8. PubMed ID: 19120110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of microgravity on osteoblast growth.
    Hughes-Fulford M; Tjandrawinata R; Fitzgerald J; Gasuad K; Gilbertson V
    Gravit Space Biol Bull; 1998 May; 11(2):51-60. PubMed ID: 11540639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.