BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 11086991)

  • 1. Rapid and reproducible deactivation of rhodopsin requires multiple phosphorylation sites.
    Mendez A; Burns ME; Roca A; Lem J; Wu LW; Simon MI; Baylor DA; Chen J
    Neuron; 2000 Oct; 28(1):153-64. PubMed ID: 11086991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of rhodopsin inactivation in vivo as revealed by a COOH-terminal truncation mutant.
    Chen J; Makino CL; Peachey NS; Baylor DA; Simon MI
    Science; 1995 Jan; 267(5196):374-7. PubMed ID: 7824934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple phosphorylation sites confer reproducibility of the rod's single-photon responses.
    Doan T; Mendez A; Detwiler PB; Chen J; Rieke F
    Science; 2006 Jul; 313(5786):530-3. PubMed ID: 16873665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of rhodopsin activity in vision.
    Baylor DA; Burns ME
    Eye (Lond); 1998; 12 ( Pt 3b)():521-5. PubMed ID: 9775212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rhodopsin phosphorylation: from terminating single photon responses to photoreceptor dark adaptation.
    Arshavsky VY
    Trends Neurosci; 2002 Mar; 25(3):124-6. PubMed ID: 11852136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. C-terminal threonines and serines play distinct roles in the desensitization of rhodopsin, a G protein-coupled receptor.
    Azevedo AW; Doan T; Moaven H; Sokal I; Baameur F; Vishnivetskiy SA; Homan KT; Tesmer JJ; Gurevich VV; Chen J; Rieke F
    Elife; 2015 Apr; 4():. PubMed ID: 25910054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A functional rhodopsin-green fluorescent protein fusion protein localizes correctly in transgenic Xenopus laevis retinal rods and is expressed in a time-dependent pattern.
    Moritz OL; Tam BM; Papermaster DS; Nakayama T
    J Biol Chem; 2001 Jul; 276(30):28242-51. PubMed ID: 11350960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abnormal photoresponses and light-induced apoptosis in rods lacking rhodopsin kinase.
    Chen CK; Burns ME; Spencer M; Niemi GA; Chen J; Hurley JB; Baylor DA; Simon MI
    Proc Natl Acad Sci U S A; 1999 Mar; 96(7):3718-22. PubMed ID: 10097103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple steps of phosphorylation of activated rhodopsin can account for the reproducibility of vertebrate rod single-photon responses.
    Hamer RD; Nicholas SC; Tranchina D; Liebman PA; Lamb TD
    J Gen Physiol; 2003 Oct; 122(4):419-44. PubMed ID: 12975449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced arrestin facilitates recovery and protects rods lacking rhodopsin phosphorylation.
    Song X; Vishnivetskiy SA; Gross OP; Emelianoff K; Mendez A; Chen J; Gurevich EV; Burns ME; Gurevich VV
    Curr Biol; 2009 Apr; 19(8):700-5. PubMed ID: 19361994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light causes phosphorylation of nonactivated visual pigments in intact mouse rod photoreceptor cells.
    Shi GW; Chen J; Concepcion F; Motamedchaboki K; Marjoram P; Langen R; Chen J
    J Biol Chem; 2005 Dec; 280(50):41184-91. PubMed ID: 16219764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Rhodopsin Phosphorylation on Dark Adaptation in Mouse Rods.
    Berry J; Frederiksen R; Yao Y; Nymark S; Chen J; Cornwall C
    J Neurosci; 2016 Jun; 36(26):6973-87. PubMed ID: 27358455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of rhodopsin deactivation and its role in regulating recovery and reproducibility of rod photoresponse.
    Caruso G; Bisegna P; Lenoci L; Andreucci D; Gurevich VV; Hamm HE; DiBenedetto E
    PLoS Comput Biol; 2010 Dec; 6(12):e1001031. PubMed ID: 21200415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arrestin competition influences the kinetics and variability of the single-photon responses of mammalian rod photoreceptors.
    Doan T; Azevedo AW; Hurley JB; Rieke F
    J Neurosci; 2009 Sep; 29(38):11867-79. PubMed ID: 19776273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhodopsin kinase and arrestin binding control the decay of photoactivated rhodopsin and dark adaptation of mouse rods.
    Frederiksen R; Nymark S; Kolesnikov AV; Berry JD; Adler L; Koutalos Y; Kefalov VJ; Cornwall MC
    J Gen Physiol; 2016 Jul; 148(1):1-11. PubMed ID: 27353443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of rhodopsin's active lifetime by arrestin-1 expression in mammalian rods.
    Gross OP; Burns ME
    J Neurosci; 2010 Mar; 30(9):3450-7. PubMed ID: 20203204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recoverin mediates the calcium effect upon rhodopsin phosphorylation and cGMP hydrolysis in bovine retina rod cells.
    Gorodovikova EN; Gimelbrant AA; Senin II; Philippov PP
    FEBS Lett; 1994 Aug; 349(2):187-90. PubMed ID: 8050563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light-dependent redistribution of arrestin in vertebrate rods is an energy-independent process governed by protein-protein interactions.
    Nair KS; Hanson SM; Mendez A; Gurevich EV; Kennedy MJ; Shestopalov VI; Vishnivetskiy SA; Chen J; Hurley JB; Gurevich VV; Slepak VZ
    Neuron; 2005 May; 46(4):555-67. PubMed ID: 15944125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium feedback to cGMP synthesis strongly attenuates single-photon responses driven by long rhodopsin lifetimes.
    Gross OP; Pugh EN; Burns ME
    Neuron; 2012 Oct; 76(2):370-82. PubMed ID: 23083739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of rhodopsin alters the structure and photoresponse of rod photoreceptors.
    Wen XH; Shen L; Brush RS; Michaud N; Al-Ubaidi MR; Gurevich VV; Hamm HE; Lem J; Dibenedetto E; Anderson RE; Makino CL
    Biophys J; 2009 Feb; 96(3):939-50. PubMed ID: 19186132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.