These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 11087311)

  • 1. De novo design of helical bundles as models for understanding protein folding and function.
    Hill RB; Raleigh DP; Lombardi A; DeGrado WF
    Acc Chem Res; 2000 Nov; 33(11):745-54. PubMed ID: 11087311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein design and folding: template trapping of self-assembled helical bundles.
    Grell D; Richardson JS; Mutter M
    J Pept Sci; 2001 Mar; 7(3):146-51. PubMed ID: 11297350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing Covalently Linked Heterodimeric Four-Helix Bundles.
    Chino M; Leone L; Maglio O; Lombardi A
    Methods Enzymol; 2016; 580():471-99. PubMed ID: 27586346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monosaccharide templates for de novo designed 4-alpha-helix bundle proteins: template effects in carboproteins.
    Brask J; Dideriksen JM; Nielsen J; Jensen KJ
    Org Biomol Chem; 2003 Jul; 1(13):2247-52. PubMed ID: 12945694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer simulations of the properties of the alpha2, alpha2C, and alpha2D de novo designed helical proteins.
    Sikorski A; Kolinski A; Skolnick J
    Proteins; 2000 Jan; 38(1):17-28. PubMed ID: 10651035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A designed branched three-helix bundle protein dimer.
    Dolphin GT
    J Am Chem Soc; 2006 Jun; 128(22):7287-90. PubMed ID: 16734482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Domain-swapped dimeric structure of a stable and functional de novo four-helix bundle protein, WA20.
    Arai R; Kobayashi N; Kimura A; Sato T; Matsuo K; Wang AF; Platt JM; Bradley LH; Hecht MH
    J Phys Chem B; 2012 Jun; 116(23):6789-97. PubMed ID: 22397676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A strategy for the de novo design of helical proteins with stable folds.
    Kuroda Y
    Protein Eng; 1995 Feb; 8(2):97-101. PubMed ID: 7630891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal attachment position and linker length promote native-like character of cavitand-based template-assembled synthetic proteins (TASPs).
    Seo ES; Scott WR; Straus SK; Sherman JC
    Chemistry; 2007; 13(13):3596-605. PubMed ID: 17295367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Importance of secondary structural specificity determinants in protein folding: insertion of a native beta-sheet sequence into an alpha-helical coiled-coil.
    Kwok SC; Mant CT; Hodges RS
    Protein Sci; 2002 Jun; 11(6):1519-31. PubMed ID: 12021450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic Monte Carlo simulations of globular protein folding/unfolding pathways. II. Alpha-helical motifs.
    Sikorski A; Skolnick J
    J Mol Biol; 1990 Apr; 212(4):819-36. PubMed ID: 2329584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo design of protein-protein interactions through modification of inter-molecular helix-helix interface residues.
    Yagi S; Akanuma S; Yamagishi M; Uchida T; Yamagishi A
    Biochim Biophys Acta; 2016 May; 1864(5):479-87. PubMed ID: 26867971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics and thermodynamics of folding of a de novo designed four-helix bundle protein.
    Guo Z; Thirumalai D
    J Mol Biol; 1996 Oct; 263(2):323-43. PubMed ID: 8913310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. De novo design: backbone conformational constraints in nucleating helices and beta-hairpins.
    Balaram P
    J Pept Res; 1999 Sep; 54(3):195-9. PubMed ID: 10517156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study of four-helix bundles: investigating protein folding via similar architectural motifs in protein cores and in subunit interfaces.
    Lin SL; Tsai CJ; Nussinov R
    J Mol Biol; 1995 Apr; 248(1):151-61. PubMed ID: 7731040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Folding of bundles of alpha-helices in solution, membranes, and adsorbed overlayers.
    Zhdanov VP; Kasemo B
    Proteins; 2001 Mar; 42(4):481-94. PubMed ID: 11170203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein design as a challenge for peptide chemists.
    Tuchscherer G; Mutter M
    J Pept Sci; 1995; 1(1):3-10. PubMed ID: 9222979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversed-phase liquid chromatography as a useful probe of hydrophobic interactions involved in protein folding and protein stability.
    Hodges RS; Zhu BY; Zhou NE; Mant CT
    J Chromatogr A; 1994 Jul; 676(1):3-15. PubMed ID: 7921179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De novo design and structural characterization of proteins and metalloproteins.
    DeGrado WF; Summa CM; Pavone V; Nastri F; Lombardi A
    Annu Rev Biochem; 1999; 68():779-819. PubMed ID: 10872466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein design: a hierarchic approach.
    Bryson JW; Betz SF; Lu HS; Suich DJ; Zhou HX; O'Neil KT; DeGrado WF
    Science; 1995 Nov; 270(5238):935-41. PubMed ID: 7481798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.