BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 11087346)

  • 1. Selective synthesis of heterobifunctional poly(ethylene glycol) derivatives containing both mercapto and acetal terminals.
    Akiyama Y; Otsuka H; Nagasaki Y; Kato M; Kataoka K
    Bioconjug Chem; 2000; 11(6):947-50. PubMed ID: 11087346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of heterotelechelic poly(ethylene glycol) derivatives having alpha-benzaldehyde and omega-pyridyl disulfide groups by ring opening polymerization of ethylene oxide using 4-(diethoxymethyl)benzyl alkoxide as a novel initiator.
    Akiyama Y; Nagasaki Y; Kataoka K
    Bioconjug Chem; 2004; 15(2):424-7. PubMed ID: 15025541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of core--shell-type nanoparticles carrying stable radicals in the core.
    Yoshitomi T; Miyamoto D; Nagasaki Y
    Biomacromolecules; 2009 Mar; 10(3):596-601. PubMed ID: 19191564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formyl-ended heterobifunctional poly(ethylene oxide): synthesis of poly(ethylene oxide) with a formyl group at one end and a hydroxyl group at the other end.
    Nagasaki Y; Kutsuna T; Iijima M; Kato M; Kataoka K; Kitano S; Kadoma Y
    Bioconjug Chem; 1995; 6(2):231-3. PubMed ID: 7599267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of X(Y)-(EO)(n)-OCH₃ type heterobifunctional and X(Y)-(EO)(n)-Z type heterotrifunctional poly(ethylene glycol)s.
    Li Z; Chau Y
    Bioconjug Chem; 2011 Mar; 22(3):518-22. PubMed ID: 21306169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Versatile and selective synthesis of "click chemistry" compatible heterobifunctional poly(ethylene glycol)s possessing azide and alkyne functionalities.
    Hiki S; Kataoka K
    Bioconjug Chem; 2010 Feb; 21(2):248-54. PubMed ID: 20078027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primary amino-terminal heterobifunctional poly(ethylene oxide). Facile synthesis of poly(ethylene oxide) with a primary amino group at one end and a hydroxyl group at the other end.
    Nagasaki Y; Iijima M; Kato M; Kataoka K
    Bioconjug Chem; 1995; 6(6):702-4. PubMed ID: 8608183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A facile synthesis of azido-terminated heterobifunctional poly(ethylene glycol)s for "click" conjugation.
    Hiki S; Kataoka K
    Bioconjug Chem; 2007; 18(6):2191-6. PubMed ID: 17958391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and applications of a new poly(ethylene glycol) derivative for the crosslinking of amines with thiols.
    Haselgrübler T; Amerstorfer A; Schindler H; Gruber HJ
    Bioconjug Chem; 1995; 6(3):242-8. PubMed ID: 7632794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Convenient polymer-supported synthetic route to heterobifunctional polyethylene glycols.
    Bettinger T; Remy JS; Erbacher P; Behr JP
    Bioconjug Chem; 1998; 9(6):842-6. PubMed ID: 9815180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(ethylene glycol-co-allyl glycidyl ether)s: a PEG-based modular synthetic platform for multiple bioconjugation.
    Obermeier B; Frey H
    Bioconjug Chem; 2011 Mar; 22(3):436-44. PubMed ID: 21319753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of heterobifunctional poly(ethylene glycol) with a reducing monosaccharide residue at one end.
    Nakamura T; Nagasaki Y; Kataoka K
    Bioconjug Chem; 1998; 9(2):300-3. PubMed ID: 9548548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative and reversible lectin-induced association of gold nanoparticles modified with alpha-lactosyl-omega-mercapto-poly(ethylene glycol).
    Otsuka H; Akiyama Y; Nagasaki Y; Kataoka K
    J Am Chem Soc; 2001 Aug; 123(34):8226-30. PubMed ID: 11516273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Convenient synthesis of heterobifunctional poly(ethylene glycol) suitable for the functionalization of iron oxide nanoparticles for biomedical applications.
    Passemard S; Staedler D; Učňová L; Schneiter GS; Kong P; Bonacina L; Juillerat-Jeanneret L; Gerber-Lemaire S
    Bioorg Med Chem Lett; 2013 Sep; 23(17):5006-10. PubMed ID: 23860589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Universal concept for the implementation of a single cleavable unit at tunable position in functional poly(ethylene glycol)s.
    Dingels C; Müller SS; Steinbach T; Tonhauser C; Frey H
    Biomacromolecules; 2013 Feb; 14(2):448-59. PubMed ID: 23256621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. α-Acetal, ω-alkyne poly(ethylene oxide) as a versatile building block for the synthesis of glycoconjugated graft-copolymers suited for targeted drug delivery.
    Freichels H; Alaimo D; Auzély-Velty R; Jérôme C
    Bioconjug Chem; 2012 Sep; 23(9):1740-52. PubMed ID: 22873620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An acetal-based PEGylation reagent for pH-sensitive shielding of DNA polyplexes.
    Knorr V; Allmendinger L; Walker GF; Paintner FF; Wagner E
    Bioconjug Chem; 2007; 18(4):1218-25. PubMed ID: 17477500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PEG-tethered guanosine acetal conjugates for the enzymatic synthesis of modified RNA.
    Wahl F; Jäschke A
    Biochem Biophys Res Commun; 2012 Jan; 417(4):1224-6. PubMed ID: 22230383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(ethylene glycol)-grafted cyclic acetals based polymer networks with non-water-swellable, biodegradable and surface hydrophilic properties.
    Yin R; Zhang N; Wu W; Wang K
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():137-43. PubMed ID: 26952407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(ethylene glycol)s With a Single Cinnamaldehyde Acetal Unit for Fabricating Acid-Degradable Hydrogel.
    Zhao X; Shan P; Liu H; Li D; Cai P; Li Z; Li Z
    Front Chem; 2020; 8():839. PubMed ID: 33102441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.