BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 11087444)

  • 1. Determination of the degree of succinylation in diverse modified starches by raman spectroscopy.
    Phillips DL; Xing J; Chong CK; Liu H; Corke H
    J Agric Food Chem; 2000 Nov; 48(11):5105-8. PubMed ID: 11087444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of NMR and raman spectroscopic methods for the determination of the degree of substitution of maleate in modified starches.
    Chong CK; Xing J; Phillips DL; Corke H
    J Agric Food Chem; 2001 Jun; 49(6):2702-8. PubMed ID: 11409954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of amylose content in starch using Raman spectroscopy and multivariate calibration analysis.
    Almeida MR; Alves RS; Nascimbem LB; Stephani R; Poppi RJ; de Oliveira LF
    Anal Bioanal Chem; 2010 Aug; 397(7):2693-701. PubMed ID: 20213166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of acetylated waxy, normal, and high-amylose maize starches with intermediate degrees of substitution in aqueous solution and their properties.
    Luo ZG; Shi YC
    J Agric Food Chem; 2012 Sep; 60(37):9468-75. PubMed ID: 22946555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies of the retrogradation process for various starch gels using Raman spectroscopy.
    Fechner PM; Wartewig S; Kleinebudde P; Neubert RH
    Carbohydr Res; 2005 Nov; 340(16):2563-8. PubMed ID: 16168973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative study of annealing of waxy, normal and high-amylose maize starches: the role of amylose molecules.
    Wang S; Wang J; Yu J; Wang S
    Food Chem; 2014 Dec; 164():332-8. PubMed ID: 24996342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism and enzymatic contribution to in vitro test method of digestion for maize starches differing in amylose content.
    Brewer LR; Cai L; Shi YC
    J Agric Food Chem; 2012 May; 60(17):4379-87. PubMed ID: 22480190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal effects on the structure of cereal starches. EPR and Raman spectroscopy studies.
    Łabanowska M; Wesełucha-Birczyńska A; Kurdziel M; Puch P
    Carbohydr Polym; 2013 Jan; 92(1):842-8. PubMed ID: 23218374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a 96-well plate iodine binding assay for amylose content determination.
    Kaufman RC; Wilson JD; Bean SR; Herald TJ; Shi YC
    Carbohydr Polym; 2015 Jan; 115():444-7. PubMed ID: 25439917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pressure-temperature phase diagrams of maize starches with different amylose contents.
    Buckow R; Jankowiak L; Knorr D; Versteeg C
    J Agric Food Chem; 2009 Dec; 57(24):11510-6. PubMed ID: 19916500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of oligomeric procyanidins on the retrogradation properties of maize starch with different amylose/amylopectin ratios.
    Liu R; Xu C; Cong X; Wu T; Song Y; Zhang M
    Food Chem; 2017 Apr; 221():2010-2017. PubMed ID: 27979193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of total iodine in intact granular starches of different botanical origin exposed to iodine vapor at various water activities.
    Manion B; Ye M; Holbein BE; Seetharaman K
    Carbohydr Res; 2011 Nov; 346(15):2482-90. PubMed ID: 21962455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retrogradation of Maize Starch after High Hydrostatic Pressure Gelation: Effect of Amylose Content and Depressurization Rate.
    Yang Z; Swedlund P; Gu Q; Hemar Y; Chaieb S
    PLoS One; 2016; 11(5):e0156061. PubMed ID: 27219066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular order and functional properties of starches from three waxy wheat varieties grown in China.
    Wang S; Wang J; Zhang W; Li C; Yu J; Wang S
    Food Chem; 2015 Aug; 181():43-50. PubMed ID: 25794719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of high hydrostatic pressure treatment on the molecular structure of starches with different amylose content.
    Szwengiel A; Lewandowicz G; Górecki AR; Błaszczak W
    Food Chem; 2018 Feb; 240():51-58. PubMed ID: 28946305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of the degree of octenyl succinylation on metal ions complexation and functional properties of maize starch.
    Królikowska K; Pietrzyk S; Fortuna T; Pająk P; Witczak M
    Food Chem; 2019 Apr; 278():284-293. PubMed ID: 30583375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Starch-based coatings for colon-specific drug delivery. Part I: the influence of heat treatment on the physico-chemical properties of high amylose maize starches.
    Cristina Freire A; Fertig CC; Podczeck F; Veiga F; Sousa J
    Eur J Pharm Biopharm; 2009 Aug; 72(3):574-86. PubMed ID: 19233267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Octenyl succinic anhydride modified early indica rice starches differing in amylose content.
    He GQ; Song XY; Ruan H; Chen F
    J Agric Food Chem; 2006 Apr; 54(7):2775-9. PubMed ID: 16569075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physicochemical Properties of Starch Isolated from Bracken (Pteridium aquilinim) Rhizome.
    Yu X; Wang J; Zhang J; Wang L; Wang Z; Xiong F
    J Food Sci; 2015 Dec; 80(12):C2717-24. PubMed ID: 26551243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of the maximum water solubility of eight native starches and the solubility of their acidic-methanol and -ethanol modified analogues.
    Mukerjea R; Slocum G; Robyt JF
    Carbohydr Res; 2007 Jan; 342(1):103-10. PubMed ID: 17112491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.